Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers show octopuses not only smart, but they can make some pretty good moves too

18.05.2011
In case you thought that octopuses were smart only in guessing the outcome of soccer matches (remember the late Paul the octopus in Germany who picked all the right winners in last year’s world cup matches in Johannesburg?), scientists at the Hebrew University of Jerusalem have now shown that not only are they smart, they can make some pretty good moves as well.

Octopuses are among the most developed invertebrates. They have large brains and are fast learners. With eight arms and no rigid skeleton, they perform many tasks like crawling, swimming, mating and hunting. And unlike most animals such as humans -- who are restricted in their movements by a rigid skeleton which helps in determining the position of their limbs – octopuses have limitless flexibility.

But because they have no such rigid structure, it was believed that the octopuses have only limited control over their eight flexible limbs. However, the Hebrew University researchers have shown otherwise. They developed a three-choice, transparent, plexiglass maze that required the octopus to use a single arm and direct it to a visually marked compartment outside of its tank of water that contained a food reward.

The octopuses in the experiment learned to insert a single arm through a central tube, out of the water, and into the correct marked goal compartment to retrieve the food reward. This success was dependent on visual information, which the octopuses were able to translate into a series of coordinated movements made by a single arm and retrieve the food. They were also able to repeat this process.

The completion of this task shows for the first time that an octopus can direct a single arm in a complex movement to a target location. Motor control issues, such as this, are the basis of an ongoing European Union research project aimed at building a “robot octopus.” To understand how the octopus controls its movements, and to what extent it controls them, is therefore an important base for the design of the control architecture of a robot devoid of a rigid skeleton.

The research was reported on in a recent edition of Current Biology, and was authored by Tamar Gutnick, Prof. Binyamin Hochner and Dr. Michael Kuba of the Interdisciplinary Center for Neural Computation at the Alexander Silberman Institute of Life Sciences at the Hebrew University, and Dr. Ruth A. Byrne of the Medical University of Vienna, Austria

For further information:
Jerry Barach, Dept. of Media Relations, the Hebrew University,
Tel: 02-588-2904.
Orit Sulitzeanu, Hebrew University spokesperson, Tel: 054-8820016

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>