Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers show influence of nanoparticles on nutrient absorption

09.03.2012
Nanoparticles are everywhere. From cosmetics and clothes, to soda and snacks.

But as versatile as they are, nanoparticles also have a downside, say researchers at Binghamton University and Cornell University in a recent paper published in the journal Nature Nanotechnology. These tiny particles, even in low doses, could have a big impact on our long-term health.

According to lead author of the article, Gretchen Mahler, assistant professor of bioengineering at Binghamton University, much of the existing research on the safety of nanoparticles has been on the direct health effects. But what Mahler, Michael L. Shuler of Cornell University and a team of researchers really wanted to know was what happens when someone gets constant exposure in small doses – the kind you'd get if you were taken a drug or supplement that included nanoparticles in some form.

"We thought that the best way to measure the more subtle effects of this kind of intake was to monitor the reaction of intestinal cells," said Mahler. "And we did this in two ways – in vitro, through human intestinal-lining cells that we had cultured in the lab; and in vivo, through the intestinal linings of live chickens. Both sets of results pointed to the same thing – that exposure to nanoparticles influences the absorption of nutrients into the bloodstream."

The uptake of iron, an essential nutrient, was of particular interest due to the way it is absorbed and processed through the intestines. The way Mahler and the team tested this was to use polystyrene nanoparticles because of its easily traceable fluorescent properties.

"What we found was that for brief exposures, iron absorption dropped by about 50 percent," said Mahler. "But when we extended that period of time, absorption actually increased by about 200 percent. It was very clear – nanoparticles definitely affects iron uptake and transport."

While acute oral exposure caused disruptions to intestinal iron transport, chronic exposure caused a remodeling of the intestinal villi – the tiny, finger-like projections that are vital to the intestine's ability to absorb nutrients – making them larger and broader, thus allowing iron to enter the bloodstream much faster.

"The intestinal cells are a gateway that ingested nanoparticles must go through to get to the body," said Mahler. "We monitored iron absorption both in vivo and in vitro and found that the polystyrene nanoparticles affected the absorption process and caused a physiological response."

The next step for Mahler and the team is to take a look at whether similar disruptions in nutrient absorption could be possible in other inorganic elements such as calcium, copper and zinc. Also on the research agenda is the reaction of other nutrients such as fat-soluble vitamins A, D, E and K. And chickens and their intestines will definitely be part of this next phase of the study.

"The gastrointestinal tract of chickens have very similar features to that of humans," said Mahler. "We can learn a great deal from the way chicken tissue works which means we can make better predictions about how humans will react."

And humans certainly consume enough nanoparticles – about 100 trillion of them every day. Their ultra-small size and amazing qualities makes them increasingly common in food and pharmaceutical products. Although the impact of chronic exposure remains somewhat unknown, the ingestion of dietary particles is thought to promote a range of diseases, including Crohn's disease. With so many nanomaterials under development and with so much yet to be learned about nanoparticle toxicity and potential human tissue reactivity, Mahler and the team are hoping that their work, particularly the in vitro model, will provide an effective low-cost screening tool.

Gail Glover | Binghamton University
Further information:
http://www.binghamton.edu/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>