Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Show How One Gene Becomes Two (With Different Functions)

13.01.2011
Researchers report that they are the first to show in molecular detail how one gene evolved two competing functions that eventually split up – via gene duplication – to pursue their separate destinies.

The study, in the Proceedings of the National Academy of Sciences, validates a decades-old hypothesis about a key mechanism of evolution. The study also confirms the ancestry of a family of “antifreeze proteins” that helps the Antarctic eelpout survive in the frigid waters of the Southern Ocean.

“I’m always asking the question of where these antifreeze proteins come from,” said University of Illinois animal biology professor Christina Cheng, who has spent three decades studying the genetic adaptations that enable Antarctic fish to survive in one of the coldest zones on the planet. “The cell usually does not create new proteins from scratch.”

Scientists have known since 2001 that the sequence of genes coding for a family of antifreeze proteins (known as AFP III) was very similar to part of a sequence of a gene that codes for a cellular enzyme in humans. Since Antarctic fish also produce this enzyme, sialic acid synthase (SAS), it was thought that the genes for these antifreeze proteins had somehow evolved from a duplicate copy of the SAS gene. But no study had shown how this happened with solid experimental data.

Cheng and her colleagues at the Chinese Academy of Sciences began by comparing the sequences of the SAS and AFP III genes.

There are two SAS genes in fish: SAS-A and SAS-B. The researchers confirmed that the AFP III genes contain sequences that are most similar to those in a region of SAS-B.

They also found a sequence in the SAS-B gene that, when translated into a new protein, could – with a few modifications – direct the cell to secrete the protein. This slightly modified signal sequence also appears in the AFP III genes. Unlike the SAS enzymes, which remain inside the cell, the AFP III proteins are secreted into the blood or extracellular fluid, where they can more easily disrupt the growth of invading ice crystals.

“This basically demonstrates how something that ‘lives’ inside the cell can acquire this new functionality and get moved out into the bloodstream to do something else,” Cheng said.

Further analysis revealed that the SAS proteins function as enzymes but also have modest ice-binding capabilities. This finding supports a decades-old hypothesis that states that when a single gene begins to develop more than one function, duplication of that gene could result in the divergent evolution of the original gene and its duplicate.

The new finding also supports the proposed mechanism, called “escape from adaptive conflict,” by which this can occur. According to this idea, if a gene has more than one function, mutations or other changes to the gene through natural selection that enhance one function may undermine its other function.

“The original enzyme function and the emerging ice-binding function of the ancestral SAS molecule might conflict with each other,” Cheng said. When the SAS-B gene became duplicated as a result of a copying error or some other random event in the cell, she said, then each of the duplicate genes was freed from the conflict and “could go on its own evolutionary path.”

“This is the first clear demonstration – with strong supporting molecular and functional evidence – of escape from adaptive conflict as the underlying process of gene duplication and the creation of a completely new function in one of the daughter copies,” Cheng said. “This has not been documented before in the field of molecular evolution.”

Cheng said that even before the gene for the secreted antifreeze protein was formed, the original SAS protein appears to have had both the enzymatic and ice-binding functions. This suggests that somehow the SAS protein (which is not secreted) acted within the cell to disrupt the growth of ice.

This could have occurred “in the early developmental stages of the fish,” Cheng said, since the eggs are spawned into a cold environment and would benefit from even the modest antifreeze capabilities of the SAS protein.

Later, after the SAS gene was duplicated and the AFP gene went on its own evolutionary path, Cheng said, the antifreeze protein appears to have evolved into a secreted protein, allowing it to disrupt ice formation in the bloodstream and extracellular fluid, where it would be of most benefit to the adult fish.

The National Science Foundation and the Chinese Academy of Sciences supported this research.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

Further reports about: AFP Antarctic Predators Chinese herbs SAS SAS-B Science TV antifreeze proteins ice crystal

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>