Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Show How One Gene Becomes Two (With Different Functions)

13.01.2011
Researchers report that they are the first to show in molecular detail how one gene evolved two competing functions that eventually split up – via gene duplication – to pursue their separate destinies.

The study, in the Proceedings of the National Academy of Sciences, validates a decades-old hypothesis about a key mechanism of evolution. The study also confirms the ancestry of a family of “antifreeze proteins” that helps the Antarctic eelpout survive in the frigid waters of the Southern Ocean.

“I’m always asking the question of where these antifreeze proteins come from,” said University of Illinois animal biology professor Christina Cheng, who has spent three decades studying the genetic adaptations that enable Antarctic fish to survive in one of the coldest zones on the planet. “The cell usually does not create new proteins from scratch.”

Scientists have known since 2001 that the sequence of genes coding for a family of antifreeze proteins (known as AFP III) was very similar to part of a sequence of a gene that codes for a cellular enzyme in humans. Since Antarctic fish also produce this enzyme, sialic acid synthase (SAS), it was thought that the genes for these antifreeze proteins had somehow evolved from a duplicate copy of the SAS gene. But no study had shown how this happened with solid experimental data.

Cheng and her colleagues at the Chinese Academy of Sciences began by comparing the sequences of the SAS and AFP III genes.

There are two SAS genes in fish: SAS-A and SAS-B. The researchers confirmed that the AFP III genes contain sequences that are most similar to those in a region of SAS-B.

They also found a sequence in the SAS-B gene that, when translated into a new protein, could – with a few modifications – direct the cell to secrete the protein. This slightly modified signal sequence also appears in the AFP III genes. Unlike the SAS enzymes, which remain inside the cell, the AFP III proteins are secreted into the blood or extracellular fluid, where they can more easily disrupt the growth of invading ice crystals.

“This basically demonstrates how something that ‘lives’ inside the cell can acquire this new functionality and get moved out into the bloodstream to do something else,” Cheng said.

Further analysis revealed that the SAS proteins function as enzymes but also have modest ice-binding capabilities. This finding supports a decades-old hypothesis that states that when a single gene begins to develop more than one function, duplication of that gene could result in the divergent evolution of the original gene and its duplicate.

The new finding also supports the proposed mechanism, called “escape from adaptive conflict,” by which this can occur. According to this idea, if a gene has more than one function, mutations or other changes to the gene through natural selection that enhance one function may undermine its other function.

“The original enzyme function and the emerging ice-binding function of the ancestral SAS molecule might conflict with each other,” Cheng said. When the SAS-B gene became duplicated as a result of a copying error or some other random event in the cell, she said, then each of the duplicate genes was freed from the conflict and “could go on its own evolutionary path.”

“This is the first clear demonstration – with strong supporting molecular and functional evidence – of escape from adaptive conflict as the underlying process of gene duplication and the creation of a completely new function in one of the daughter copies,” Cheng said. “This has not been documented before in the field of molecular evolution.”

Cheng said that even before the gene for the secreted antifreeze protein was formed, the original SAS protein appears to have had both the enzymatic and ice-binding functions. This suggests that somehow the SAS protein (which is not secreted) acted within the cell to disrupt the growth of ice.

This could have occurred “in the early developmental stages of the fish,” Cheng said, since the eggs are spawned into a cold environment and would benefit from even the modest antifreeze capabilities of the SAS protein.

Later, after the SAS gene was duplicated and the AFP gene went on its own evolutionary path, Cheng said, the antifreeze protein appears to have evolved into a secreted protein, allowing it to disrupt ice formation in the bloodstream and extracellular fluid, where it would be of most benefit to the adult fish.

The National Science Foundation and the Chinese Academy of Sciences supported this research.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

Further reports about: AFP Antarctic Predators Chinese herbs SAS SAS-B Science TV antifreeze proteins ice crystal

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>