Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers show how algae make surplus light energy harmless

26.11.2009
Light is of vital importance. However, excessive sunbathing causes sunburn - and not only in people and animals. Intensive exposure to sunlight can be harmful for plants, too.

A team of scientists from Münster and the USA have now been able to show for the first time how green algae protect themselves against such damage. The journal "Nature" carries a report on this in the issue published on 26 November 2009.

Plants are dependent on sunlight for growth. With the aid of light energy they produce sugar molecules which are converted into components of their cells and act as suppliers of energy. In this process plants extract carbon dioxide from the atmosphere and release oxygen. This process - called photosynthesis - is the basis of all life on earth.

"Photosynthesis provides the vegetable biomass - and thus the basis of food supply - for people and animals," says Prof. Michael Hippler from the Institute of Biochemistry and Plant Biotechnology at Münster University.

However, using light energy to produce biomass is a tricky business for plants. The absorption of light through cellular pigment molecules, e.g. through chlorophyll, can lead to the production of oxygen radicals in plants and thus damage them. "In order to protect themselves from such oxidative destruction - 'sunburn', so to speak," says Prof. Hippler, "plants have developed mechanisms for converting the surplus light energy into heat energy. Although algae produce a large share of the biomass generated worldwide, very little was known up to now about this protective mechanism in algae - in contrast to flowering plants." An international team of scientists led by Prof. Hippler and Prof. Kris Niyogi from the University of California in Berkeley, USA, have now thrown light on this sun protection mechanism in the unicellular green alga Chlamydomonas reinhardtii.

The sun protection factor is a certain light-harvesting protein (LHCSR3). "In general," explains Prof. Hippler, "such proteins harvest light - as their name suggests - and they make it available for photosynthesis. In this particular case, however, the protein permits the conversion of light energy to heat energy and in the process it renders the surplus light energy harmless." In comparison to traditional light-harvesting proteins, LHCSR3 has very old origins, probably stemming directly from the 'forebear' of all light-harvesting proteins. If there is any obstacle to the production of this protein, the algae are no longer able to dissipate harmful excess energy. They then get 'sunburn', which can in fact result in the alga cells dying.

"Interestingly, flowering plants have lost these protein molecules during their evolution and have developed another sun protection mechanism in which light is also converted into heat energy," says Prof. Hippler. "The discovery of the 'sun protection factor' in algae makes it possible for us to have deep insights into the regulation of aquatic photosynthesis, which is responsible for 50 percent of the primary production of biomass worldwide." Moreover, he says, the insights could be used to optimize the culture of micro-algae in bio-reactors. In this way the biotechnological production of biomass from algae could be improved, e.g. for the production of bio-fuels.

Reference:
Peers G. et al. (2009): An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462, 518-521; doi: 10.1038/nature08587

Dr. Christina Heimken | idw
Further information:
http://www.nature.com/nature/journal/v462/n7272/full/nature08587.html
http://www.uni-muenster.de/hippler/

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>