Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers share insights into RNA

32nd Annual Sanford-Burnham Scientific Symposium provides wealth of information on microRNAs and RNAi

Investigators from around the country came to Sanford-Burnham Medical Research Institute (Sanford-Burnham) on Friday, May 7, to share their knowledge of the burgeoning young field of microRNAs. These small non-coding nucleic acids turn off proteins and have been implicated in viral infection, cancer, cardiovascular disease, HIV and numerous other conditions.

"The discovery that small RNAs could shut down gene expression was revolutionary," said Tariq Rana, Ph.D., who directs the RNA Biology program at Sanford-Burnham. Dr. Rana organized the symposium with Sanford-Burnham colleagues Rolf Bodmer, Ph.D., and Sumit Chanda, Ph.D.

The symposium, entitled RNAi and microRNA Regulatory Functions, featured a who's who of RNA biologists sharing their understanding of how these small RNAs regulate gene function and contribute to disease.

One of the speakers, Shiv Grewal, Ph.D., senior investigator at the National Cancer Institute, works to understand how RNAi regulates chromatin, the combination of proteins and DNA that makes up chromosomes. Dr. Grewal's research has shown that RNAi machinery stabilizes these critical structures. "If you disrupt this process, chromosomes will not segregate properly," said Dr. Grewal. "After cell division, one cell will get more and the other will get less, a very common feature in cancer cells."

Deepak Srivastava, M.D., a pediatric cardiologist and director of the Gladstone Institute of Cardiovascular Disease, has been working to understand how the heart develops. His research has shown that microRNAs and proteins work in complementary networks to help progenitor cells choose what kind of heart cells to become. "There is a transcriptional network that controls cell fate decisions in the heart," said Dr. Srivastava. "Overlaid on that is a translational network controlled by microRNAs that controls how much protein is made of those same transcription factors. But also, those transcription factors control the dose of microRNAs. It's a very coordinated network."

Amy Pasquinelli, Ph.D., associate professor at UC, San Diego, is working to determine how microRNAs bind to their target. "We want to understand the pairing rules," said Dr. Pasquinelli. "If we can understand those, we can use bioinformatics to predict, simply by looking at the microRNA sequence, where it's going to bind, what gene it will target and what will be the ultimate result."

Other researchers shared their work on a number of topics, including the fundamental roles of microRNAs in biology and epigenetics; developing cutting-edge technologies that use small RNAs to investigate disease processes; high-resolution structures of RNAi machinery; RNA-mediated regulation of herpes infections; and RNA-based treatments for neurodegenerative disorders, AIDS, cancer and metabolic diseases.

Other speakers included: Norbert Perrimon, Ph.D., HHMI Investigator, Harvard Medical School; Bryan Cullen, Ph.D., James B. Duke Professor of Molecular Genetics & Microbiology, Director, Duke University Center for Virology; Dinshaw Patel, Abby Rockefeller Mauzé Chair in Experimental Therapeutics, Structural Biology Program, Memorial Sloan-Kettering Cancer Center; Danesh Moazed, Ph.D., HHMI Investigator, Harvard Medical School; John Rossi, Ph.D., Lidlow Family Research Chair, professor, Department of Molecular and Cellular Biology at City of Hope; Peter Linsley, Ph.D., Chief Scientific Officer, Regulus Therapeutics; and Beverly Davidson, Ph.D., professor of Internal Medicine, University of Iowa.

About Sanford-Burnham Medical Research Institute

Sanford-Burnham Medical Research Institute (formerly Burnham Institute for Medical Research) is dedicated to discovering the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Sanford-Burnham, with operations in California and Florida, is one of the fastest-growing research institutes in the country. The Institute ranks among the top independent research institutions nationally for NIH grant funding and among the top organizations worldwide for its research impact. From 1999 – 2009, Sanford-Burnham ranked #1 worldwide among all types of organizations in the fields of biology and biochemistry for the impact of its research publications, defined by citations per publication, according to the Institute for Scientific Information. According to government statistics, Sanford-Burnham ranks #2 nationally among all organizations in capital efficiency of generating patents, defined by the number of patents issued per grant dollars awarded.

Sanford-Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, and infectious, inflammatory, and childhood diseases. The Institute is especially known for its world-class capabilities in stem cell research and drug discovery technologies. Sanford-Burnham is a nonprofit public benefit corporation. For more information, please visit

Josh Baxt | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>