Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers shake up scientific theory on motor protein

09.02.2009
An international team of scientists led by the University of Leeds has shed new light on the little-understood motor protein called dynein, thought to be involved in progressive neurological disorders such as motor neurone disease.

Researchers from the University's Astbury Centre for Structural Molecular Biology and from the University of Tokyo have for the first time identified key elements of dynein's structure, and the winch-like mechanism by which it moves.

The research – funded by the Biotechnology and Biological Sciences Research Council and the Wellcome Trust – is published in the latest issue of Cell.

Dynein is the largest, but least understood of the three families of motor proteins, yet it is responsible for many key processes, such as powering the movement of sperm and eggs, and helping cells divide. It is also responsible for transporting molecular cargo within cells such as motor neurones, the nerve cells that supply all voluntary muscle activity.

Lead researcher, Dr Stan Burgess from the University of Leeds' Faculty of Biological Sciences, says: "Motor neurones have a very complex transportation system. While the nuclei of motor neurones lie within the spinal cord, they have branches that can run the entire length of a limb, say from the spine to the big toe. This branch is like a highway for molecular motors such as dynein. If there's a disruption to the traffic, it can lead to cell death and eventually to muscular weakness, characterised in diseases such as motor neurone disease."

Measuring only 50 nanometers, dynein can carry its cargo up to a metre in humans - the equivalent of humans walking about forty thousand kilometres. Dynein is poorly understood, partly because it is difficult to engineer for experimental studies and because the usual techniques for determining the structure of a molecule – X-ray crystallography and nuclear magnetic resonance spectroscopy (NMR) - have been unsuccessful.

The Leeds team worked with synthetic dynein engineered by their Japanese colleagues which contained fluorescent marker proteins at key points within the motor. Using an electron microscope, they were able to plot the positions of the marker proteins both with and without ATP, the 'fuel' that drives the motor.

Dr Burgess says: "Dynein, like all proteins, is a long linear molecule folded up into a complicated three-dimensional structure. While we can't solve the atomic structure using electron-microscopy, our research has enabled us to map key points in the chain and see which parts of it move."

Co-researcher Anthony Roberts, says: "Seeing the molecule change shape with ATP gives us clues to its motor mechanism that we will follow up in future work."

The Japanese scientists also removed the ends of the dynein molecule to expose the core, and imaging at Leeds showed that – contrary to the accepted model – the core of dynein is similar to other ring-shaped molecular machines in the cell, with which dynein shares distant evolutionary links.

"There has been disagreement over the structure of dynein within the scientific community, and both elements of our research – identifying the moving parts and revealing the structure of the core – has meant we can correct some of the mistaken ideas," says Dr Burgess. "Hopefully this will enable future research on this very important protein to move forward much faster."

The researchers from Leeds and Tokyo have already joined forces with colleagues in Ljubljana, Slovenia, to secure a grant of US$1.2 million from the prestigious Human Frontier Science Program (HFSP) to continue their research on dynein. Their bid was ranked first among 18 awards made from 600 original applications from around the world.

Headed by Dr Burgess, the international team will build on their latest findings and their expertise in engineering and imaging dynein. They aim to study the structure of two-headed dynein walking along its microtubule track using electron microscopy. Colleagues in Tokyo will measure the force it exerts as it walks as well as its step size and speed. The team in Slovenia will then combine all the new data into a computer model to simulate the movement of the protein.

"By examining the structure and mechanism of dynein while it's moving, we hope to learn more about how the protein works in the cell, so we can better understand what happens when it goes wrong," says Dr Burgess.

Jo Kelly | EurekAlert!
Further information:
http://www.leeds.ac.uk

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>