Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers sequence swine genome, discover associations that may advance animal and human health

16.11.2012
An international scientific collaboration that includes two Kansas State University researchers is bringing home the bacon when it comes to potential animal and human health advancements, thanks to successfully mapping the genome of the domestic pig.

The sequenced genome gives researchers a genetic blueprint of the pig. It includes a complete list of DNA and genes that give pigs their traits like height and color. Once all of the genetic information is understood, scientists anticipate improvements to the animal's health as well as human health, as pigs and humans share similar physiologies.

"With the sequenced genome we have a better blueprint than we had before about the pig's genetics and how those genetic mechanisms work together to create, such as the unique merits in disease resistance," said Yongming Sang, research assistant professor of anatomy and physiology at Kansas State University.

For three years, Sang worked on the genome sequencing project with Frank Blecha, associate dean for the College of Veterinary Medicine and university distinguished professor of anatomy and physiology.

A report of the international study appears as the cover story for the Nov. 15 issue of the journal Nature.

The sequencing effort was led by the Swine Genome Sequencing Consortium. Researchers with the consortium invited Sang and Blecha to work on the project because of their expertise and published studies on the antimicrobial peptides and interferons that pigs use to genetically defend themselves against disease.

Sang and Blecha focused on these two families of immune genes, looking for gene duplications and gene-family expansions throughout the pig's 21,640 protein-coding genes, in an effort to help scientists with future pig-related research.

Sang also completed much of the genome annotation for Kansas State University's contributions. Genome annotation involves identifying, categorizing and recording the potential functions of thousands of individual genes and gene cluster locations in the pig genome.

Analysis revealed that the olfactory and cathelicidin gene families in pigs are more evolutionarily evolved than those in humans and many other animals. Pigs have a better sense of smell, which makes them experts at finding truffles, for example. Pigs also have twice as many interferon genes as humans, possibly indicating some unique immune mechanisms against viral infection, Sang said.

Researchers also discovered several health similarities between humans and pigs. Pigs share some of the same protein abnormalities as humans with obesity, diabetes, dyslexia, Parkinson's disease and Alzheimer's disease.

Similarly, researchers found that pigs have fewer endogenous retroviruses than many other animals, making pigs an important ally for more complex medical procedures like organ transplants.

"The pig genome is very important, maybe even more important than we once thought," Sang said. "It is very good for biomedical research advancements and it also looks to be a good resource for comparative studies of many other diseases."

At Kansas State University the sequenced pig genome stands to benefit agricultural, food animal and veterinary medicine research.

"For many years the pig has been one of the best models for human physiology and has been used extensively because of that," Blecha said. "While this is a blueprint for the health of the pig, it is also a blueprint for the expression of genes and how to modify them for perhaps better animal models and improved health across all species. This moves agricultural and biomedical science forward for the good of everyone."

Frank Blecha | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>