Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Re-sequence Six Corn Varieties, Find Some Genes Missing

26.11.2010
Most living plant and animal species have a certain, relatively small, amount of variation in their genetic make-up.

Differences in height, skin and eye color of humans, for example, are very noticeable, but are actually the consequences of very small variations in genetic makeup.

Researchers at Iowa State University, China Agricultural University and the Beijing Genomics Institute in China recently re-sequenced and compared six elite inbred corn (maize) lines, including the parents of the most productive commercial hybrids in China.

When comparing the different inbred corn lines, researchers expected to see more variations in the genes than in humans.

Surprisingly, researchers found entire genes that were missing from one line to another.

"That was a real eye opener," said Patrick Schnable, director of the Center for Plant Genomics and professor of agronomy at ISU.

The research uncovered more than 100 genes that are present in some corn lines but missing in others.

This variation is called the presence/absence variation, and Schnable thinks it could be very important.

Schnable's research is the cover article for the current edition of the journal Nature Genetics, and has been highlighted by the association Faculty 1000, which identifies the top 2 percent of important research from peer-reviewed journals worldwide.

"One of the goals of the research is to try to identify how heterosis (hybrid vigor) works," said Schnable.

Heterosis is the phenomenon in which the offspring of two different lines of corn grow better than either of the two parents. This is the attribute that has enabled corn breeders to produce better and better hybrids of corn.

For instance, two lines of corn can be bred to produce a hybrid that increases yield or resists drought or pests better than either of the parents.

With the current discovery that certain genes are missing from inbred corn lines, Schnable thinks science is a step closer to identifying which genes are responsible for which traits.

Knowing which genes are important would provide a shortcut for breeders to produce hybrids with specific traits.

For example, if one inbred line is missing a gene and is drought susceptible, crossing that line with a line that includes the missing gene and is drought tolerant, might lead to a better hybrid, according to Schnable.

"If we can understand how heterosis works, we might be able to make predictions about which inbreds to cross together," said Schnable. "I don't think we'll be able to tell plant breeders which hybrids will be the absolute winners. But we might be able to say 'These combinations are probably not worth testing.'"

Schnable sees combining genes from two lines as a chance to introduce the best from both plants.

"These are complementing somehow," he said. "It's like a really good marriage. She's good at this, and he's good at that, and together, they form a good team."

The potential for improvement is great, but Schnable cautions that much work needs to be done.

"We are at the point where we think this is going to be important, but we don't know which genes specifically are going to be important," he said. "Now we need to figure out which genetic combinations will be predictive of hybrid success."

Patrick Schnable, Agronomy, 515-294-0975, schnable@iastate.edu

Dr. Schnable is currently out of the country and can be contacted by e-mail.

Dan Kuester, News Service, 515-294-0704, kuester@iastate.edu

Dan Kuester | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>