Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at the RUB and from Taiwan discover energy supply for protein secretion

10.05.2012
Out of the cell

Journal of Biological Chemistry: mechanism of bacterial transport system published

In order to interact with the environment, bacteria secrete a whole arsenal of proteins. Researchers have now found how one of the transportation systems used for this purpose – the type VI secretion system – works for the single-celled organism Agrobacterium tumefaciens. They have identified the relevant transport proteins and their energy suppliers.


Export mechanism: To get to the outside, Hcp has to get past two cell membranes. This is only possible if it forms a complex with the two membrane proteins TssM (grey) and TssL (white). The energy for the export is produced by the interaction of TssM with the energy storage molecule ATP. Figure: modified from the Journal of Biological Chemistry

With colleagues at the Academia Sinica in Taiwan, RUB biologist Prof. Dr. Franz Narberhaus describes the findings in the Journal of Biological Chemistry. “The proteins involved also occur in other secretion apparatuses” explains Narberhaus from the Department of Microbial Biology. “Therefore, the results contribute to the general understanding of the system.”

Protein arsenal for many purposes

Bacteria use secreted proteins to make nutrients available, to fend off competitors and to infect human, animal or plant host cells. “Agrobacterium tumefaciens is a fascinating bacterium. It can genetically modify plants and stimulate tumour formation”, says Narberhaus. Five bacterial secretion systems have been known for a long time. The type VI system was only discovered a few years ago. Among other things, it transports the protein Hcp through two membranes into the environment – for what purpose is, as yet, unclear. The question of how the export of Hcp is driven was also unanswered. This is precisely what the German-Taiwanese team has now revealed.

Membrane protein TssM: the driver of the protein export

Narberhaus and his colleagues have shown that two proteins in the cell membrane of the bacteria, called TssL and TssM, are responsible for the export of Hcp. The molecule ATP, a cellular energy store, serves as fuel for the transport process. The membrane protein TssM binds the energy supplier ATP, thereby changing its own structure and splitting the ATP. The energy thus released allows the associated membrane protein TssL to bind its cargo (Hcp) so that a tripartite complex of TssM, TssL and Hcp is formed. Hcp only passes from the bacterial cell into the environment when this complex forms.

Successful cooperation between Bochum und Taiwan

“Large membrane proteins such as TssM are difficult to study biochemically. Our colleagues in Taiwan have done a great job” Prof. Narberhaus explains. “It will now be particularly interesting to explore the biological significance of the system.” The analyses of ATP splitting, also called hydrolysis, were established in Prof. Narberhaus’s laboratory by the doctoral student Lay-Sun Ma during a research visit. “Because of the participation in the Collaborative Research Centre SFB 642 ‘GTP- and ATP-dependent membrane processes’, we are able to offer ideal conditions for working with ATP-dependent proteins” the RUB-biologist explains. This is the second time that the DAAD has funded the cooperation between the laboratories of Franz Narberhaus and Erh-Min Lai. The successful cooperation is also to continue in the future. “It is bound to last for many years”, the Bochum researcher is convinced. The next exchange of doctoral students is planned for autumn.

Bibliographic record

L.-S. Ma, F. Narberhaus, E.-M. Lai (2012): IcmF family protein TssM exhibits ATPase activity and energizes type VI secretion, Journal of Biological Chemistry, doi: 10.1074/jbc.M111.301630

Further information

Prof. Dr. Franz Narberhaus, Department of Microbial Biology, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-23100

franz.narberhaus@rub.de

Click for more

Microbial biology at the RUB
http://www.ruhr-uni-bochum.de/mikrobiologie/index_en.html
Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/
http://www.ruhr-uni-bochum.de/mikrobiologie/index_en.html

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>