Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at the RUB and from Taiwan discover energy supply for protein secretion

10.05.2012
Out of the cell

Journal of Biological Chemistry: mechanism of bacterial transport system published

In order to interact with the environment, bacteria secrete a whole arsenal of proteins. Researchers have now found how one of the transportation systems used for this purpose – the type VI secretion system – works for the single-celled organism Agrobacterium tumefaciens. They have identified the relevant transport proteins and their energy suppliers.


Export mechanism: To get to the outside, Hcp has to get past two cell membranes. This is only possible if it forms a complex with the two membrane proteins TssM (grey) and TssL (white). The energy for the export is produced by the interaction of TssM with the energy storage molecule ATP. Figure: modified from the Journal of Biological Chemistry

With colleagues at the Academia Sinica in Taiwan, RUB biologist Prof. Dr. Franz Narberhaus describes the findings in the Journal of Biological Chemistry. “The proteins involved also occur in other secretion apparatuses” explains Narberhaus from the Department of Microbial Biology. “Therefore, the results contribute to the general understanding of the system.”

Protein arsenal for many purposes

Bacteria use secreted proteins to make nutrients available, to fend off competitors and to infect human, animal or plant host cells. “Agrobacterium tumefaciens is a fascinating bacterium. It can genetically modify plants and stimulate tumour formation”, says Narberhaus. Five bacterial secretion systems have been known for a long time. The type VI system was only discovered a few years ago. Among other things, it transports the protein Hcp through two membranes into the environment – for what purpose is, as yet, unclear. The question of how the export of Hcp is driven was also unanswered. This is precisely what the German-Taiwanese team has now revealed.

Membrane protein TssM: the driver of the protein export

Narberhaus and his colleagues have shown that two proteins in the cell membrane of the bacteria, called TssL and TssM, are responsible for the export of Hcp. The molecule ATP, a cellular energy store, serves as fuel for the transport process. The membrane protein TssM binds the energy supplier ATP, thereby changing its own structure and splitting the ATP. The energy thus released allows the associated membrane protein TssL to bind its cargo (Hcp) so that a tripartite complex of TssM, TssL and Hcp is formed. Hcp only passes from the bacterial cell into the environment when this complex forms.

Successful cooperation between Bochum und Taiwan

“Large membrane proteins such as TssM are difficult to study biochemically. Our colleagues in Taiwan have done a great job” Prof. Narberhaus explains. “It will now be particularly interesting to explore the biological significance of the system.” The analyses of ATP splitting, also called hydrolysis, were established in Prof. Narberhaus’s laboratory by the doctoral student Lay-Sun Ma during a research visit. “Because of the participation in the Collaborative Research Centre SFB 642 ‘GTP- and ATP-dependent membrane processes’, we are able to offer ideal conditions for working with ATP-dependent proteins” the RUB-biologist explains. This is the second time that the DAAD has funded the cooperation between the laboratories of Franz Narberhaus and Erh-Min Lai. The successful cooperation is also to continue in the future. “It is bound to last for many years”, the Bochum researcher is convinced. The next exchange of doctoral students is planned for autumn.

Bibliographic record

L.-S. Ma, F. Narberhaus, E.-M. Lai (2012): IcmF family protein TssM exhibits ATPase activity and energizes type VI secretion, Journal of Biological Chemistry, doi: 10.1074/jbc.M111.301630

Further information

Prof. Dr. Franz Narberhaus, Department of Microbial Biology, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-23100

franz.narberhaus@rub.de

Click for more

Microbial biology at the RUB
http://www.ruhr-uni-bochum.de/mikrobiologie/index_en.html
Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/
http://www.ruhr-uni-bochum.de/mikrobiologie/index_en.html

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>