Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers reveal SBP8a configurations

07.12.2011
New discovery bonds to anthrax spores, not just anthrax bacteria

A new study has shown previously unseen details of an anthrax bacteriophage — a virus that infects anthrax bacteria — revealing for the first time how it infects its host, and providing an initial blueprint for how the phage might someday be modified into a tool for the detection and destruction of anthrax and other potential bioterror agents.

The bacteriophage, known as Bacillus anthracis spore-binding phage 8a (or SBP8a, for short), is too small to be seen with a conventional light microscope. To create a portrait of the virus, researchers employed cryo-electron tomography, using an electron microscope to image a flash-frozen sample from many different viewing angles. With the help of computers, the scientists then recombined these views to produce three-dimensional renderings of the phage.

One of the surprising initial results was that the samples imaged contained SBP8a in four distinctly different configurations. While all four states are generally similar, with globular "heads" and linear "tails," significant differences can be seen that the researchers believe correspond to different steps in the viral infection process.

"The images we made from these four major populations clearly show in three dimensions exactly how these remarkable nanodevices are able to penetrate the anthrax cell, release their DNA from the bacteriophage's head and ultimately control its flow through the phage tail and into the cell," said University of Texas Medical Branch at Galveston assistant professor Marc Morais, senior author of a paper on the study now online in Virology.

Each of SBP8a's different states is marked by four key substructures: a hockey-puck-shaped "baseplate" at the opposite end of the tail from the head; a hollow tube running from the head to the baseplate; a sheath formed by six strands that wind around the hollow tube; and SBP8a's neck, which lies at the intersection of the bacteriophage's tail and its DNA-containing head and which is connected to the baseplate by the six-stranded helical sheath.

The process begins when the baseplate recognizes and binds to a suitable receptor on an anthrax bacterium. This binding causes the baseplate to immediately change its shape to a more open, clawlike structure, which in turn signals the sheath to contract to nearly half its length.

"When it contracts the tube has no choice but to be driven into the cell, much like a syringe," Morais said. "And in addition to contracting, the tail sheath is rotating, and that rotation exerts a torque on the neck protein, which opens the neck protein up so that DNA can now flow from the head into the tail, and then through the tail into the host cell's cytoplasm."

Morais' interest in SBP8a goes beyond the mechanics of its replication. He and his colleagues would like to take advantage of the fact that unlike other anthrax bacteriophages, SBP8a bonds to anthrax spores, not just anthrax bacteria. That gives it the potential to serve as the basis of a highly efficient detection system for the deadly agent.

"We want to push to high enough resolution where we can see secondary structure and make reliable models, and really rationally engineer these type of things," Morais said. "The genome has been sequenced now, and we're figuring out which parts can be removed and replaced with green fluorescent protein — the first step to endowing these bacteriophages with a reporter capacity and making them a detection tool.

"The great thing about our approach is that it is completely flexible. Every pathogenic bacterium has a phage associated with it. Thus, one could imagine tagging each pathogen-specific phage with a different colored signaling molecule such that you could make a cocktail of modified phages that glows a different color depending on which bacteria is present. Such a kit could be used to quickly identify a pathogen present in a bioterror attack."

Morais' co-author on the Virology paper is assistant professor Jun Liu of the University of Texas Health Science Center at Houston. Other authors include postdoctoral fellow Xiaofeng Fu and assistant professor Angel Paredes of the University of Texas Health Science Center at Houston. The SBP8a phage was discovered and isolated by co-author Michael Walter, an associate professor at the University of Northern Iowa.

Kristen Hensley | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>