Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers reveal genomic diversity of individual lung tumors

10.10.2014

Findings suggest sequencing a single region of a localized tumor will identify driver mutations

Known cancer-driving genomic aberrations in localized lung cancer appear to be so consistently present across tumors that a single biopsy of one region of the tumor is likely to identify most of them, according to a paper published today in Science.

The study led by scientists at The University of Texas MD Anderson Cancer Center addresses the challenge of what scientists call genomic heterogeneity, the presence of many different variations that drive tumor formation, growth and progression, and likely complicate the choice and potential efficacy of therapy.

A landmark study of renal cell cancer in 2012 found that most cancer-promoting variations were not present across all regions of those tumors, so biopsy of a single region would not provide a good representation of cancer genes important in the genesis of any given tumor.

"An important point from our lung cancer study is that tumor heterogeneity will vary between one type of cancer and another. The pattern we found in lung adenocarcinoma is quite different than that in renal cell carcinoma," said study first author Jianjun Zhang, M.D., Ph.D. instructor in Genomic Medicine.

The researchers conducted whole exome sequencing on 48 tumor regions from 11 surgically removed localized lung adenocarcinomas, cancers that form in the epithelial tissue that lines the lung. Surgery for these non-small cell lung cancers is potentially curative.

They identified 7,269 mutations and found on average 76 percent of all mutations and 20 out of 21 known cancer gene mutations were found in all regions of the same tumor.

"This indicates that a single biopsy, sequenced at appropriate depth, may prove to be very informative regarding mutations in known cancer genes in this group of lung cancers," said paper senior author Andrew Futreal, Ph.D., professor of Genomic Medicine and holder of the Robert A. Welch Distinguished University Chair in Chemistry at MD Anderson.

Possible Connection to Relapse

Genomic heterogeneity within a tumor can be depicted as a tree structure. The trunk represents mutations present in all regions of the tumor, branches stand for mutations found in only some regions and smaller or "private" branches representing variations found only in one region.

Trunk mutations, such as the 20 cancer gene mutations the researchers found across all regions of the lung tumors, occur earlier, with branch mutations occurring later than those in the trunk.

At a median follow up of 21 months, three of the 11 patients relapsed. All three had a larger proportion of branch mutations, 40 percent, limited to a few or even one region of the tumor, compared to only 17 percent of such mutations found in those who did not relapse.

Zhang and Futreal caution that these numbers are too small to draw conclusions from; larger studies are needed to confirm the relationship between relapse and the burden of these branch mutations.

"If the correlation holds, that implies that some aspect of these branch mutations may be driving relapse, either by being a surrogate of some biological aspect of the tumor that we do not yet recognize or there being mutations occurring later that impart more aggressive characteristics, or some combination of the two," Futreal said.

The team is in the process of launching a larger study focusing on early stage lung adenocarcinomas to study the association between branch mutations and post-surgical relapse, Zhang said. Findings could lead to insights that would allow stratification of those patients at higher risk of relapse and allow for clinical trials of post-surgical drug treatment to prevent relapse. Standard of care for early stage lung cancer is surgery alone, which has 30 to 50 percent relapse rate.

###

Science also will publish a companion paper reaching the same conclusions led by scientists at Cancer Research UK in the United Kingdom. Futreal was at the Cancer Genome Project of the Wellcome Trust Sanger Institute before coming to MD Anderson in 2012. Futreal and longtime colleague Charles Swanton, M.D., Ph.D., of Cancer Research UK led the 2012 renal cell carcinoma study reported in the New England Journal of Medicine.

Co-authors with Futreal, Zhang and project co-leader Ignacio Wistuba, M.D., professor and chair of Translational Molecular Pathology are Junya Fujimoto, Ph.D., and Chi-Wan Chow also of Translational Molecular Pathology; Jianhua Zhang, Ph.D., Xingzhi Song, Ph.D., Sahil Seth, Harshad Mahadeshwar, Alexei Protopopov, Ph.D., Huandon Sun, and Jiabin Tang, Ph.D., of MD Anderson's Institute for Applied Cancer Science; Yu Cao, Curtis Gumbs, and Latasha Little of Genomic Medicine; Kathryn Gold, M.D., William William, M.D., John Heymach, M.D., Ph.D., and Waun Ki Hong, M.D., of Thoracic/Head and Neck Medical Oncology; Stephen Swisher, M.D., of Thoracic and Cardiovascular Surgery; J. Jack Lee, Ph.D., of Biostatistics, Jiexin Zhang of Bioinformatics and Computational Biology; Neda Khalor, M.D., and Cesar Moran, M.D., of Pathology; Xifeng Wu and Yuanquing Ye of Epidemiology; and David Wedge, Ph.D., of the Cancer Genome Project, Wellcome Trust Sanger Institute, U.K.

This research was funded by grants from the Cancer Prevention and Research Institute of Texas, The University of Texas System STARS Award, the U.S. Department of Defense, the A. Lavoy Moore Endowment Fund, the Welch Foundation and grants from the National Cancer Institute of the National Institutes of Health including the Lung Cancer Specialized Program of Research Excellence (P50CA70907) shared by The University of Texas Southwestern Medical Center and MD Anderson, MD Anderson's NCI Cancer Center Support Grant (CA016672) and the NIH T32 Research Training in Academic Medical Oncology (CA009666).

Scott Merville | Eurek Alert!
Further information:
http://www.mdanderson.org/

Further reports about: CANCER Pathology diversity genomic heterogeneity lung lung cancer mutations

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>