Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Resurrect Four-Billion-Year-Old Enzymes, Reveal Conditions of Early Life on Earth

08.04.2011
A team of scientists from Columbia University, Georgia Institute of Technology and the University of Granada in Spain have successfully reconstructed active enzymes from four-billion-year-old extinct organisms.

By measuring the properties of these enzymes, they could examine the conditions in which the extinct organisms lived. The results shed new light on how life has adapted to changes in the environment from ancient to modern Earth.

In their study, published in the journal Nature Structural & Molecular Biology, the researchers used vast amounts of genetic data to computationally reconstruct the genes of extinct species, a technique known as ancestral sequence reconstruction. The researchers then went a step further and synthesized the proteins encoded by these genes. They focused their efforts on a specific protein, thioredoxin, which is a vital enzyme found in all living cells.

Dr. Julio Fernandez, professor in Columbia’s Department of Biological Sciences, and his team conducted a detailed biophysical analysis of the reconstructed thioredoxin enzymes, using ultra-high resolution atomic force microscopy methods. “Given the ancient origin of the reconstructed thioredoxin enzymes, with some of them predating the buildup of atmospheric oxygen, we expected their catalytic chemistry to be simple,” said Dr. Fernandez, “Instead, we found that enzymes that existed in the Precambrian era up to four billion years ago possessed many of the same chemical mechanisms observed in their modern day relatives.”

Further examination of the ancient enzymes by Dr. Jose Sanchez-Ruiz’ group at the University of Granada in Spain revealed some striking features; the enzymes were highly resistant to temperature and were active in more acidic conditions. The findings suggest that the species hosting these ancient enzymes thrived in very hot environments that since then have progressively cooled down, and that they lived in oceans that were more acidic than today.

“By resurrecting proteins, we are able to gather valuable information about the adaptation of extinct forms of life to environmental alterations that cannot be uncovered through fossil record examinations,” said Dr. Eric Gaucher, an expert in ancestral sequence reconstruction at the Georgia Institute of Technology.

The researchers are now looking to apply their strategy to other enzymes to get a clearer picture of what life was like on early earth.

The work could have applications in biotechnology, where enzymes are playing an increasing role in many industrial processes. “The unique features we observe in the ancestral enzymes show that our technique could be adapted to generate enhanced enzymes for a wide range of applications,” remarked Pallav Kosuri, a graduate student and part of the team at Columbia University. “If we learn to harness these extinct features, we could potentially improve the efficiency of important processes such as the generation of biofuels,” he added. Columbia Technology Ventures, the technology transfer office at Columbia University, is working with the scientific team to explore commercial applications of the discoveries.

About Columbia University
A leading academic and research university, Columbia University continually seeks to advance the frontiers of knowledge and to foster a campus community deeply engaged in understanding and addressing the complex global issues of our time. Columbia’s extensive public service initiatives, cultural collaborations, and community partnerships help define the university’s underlying values and mission to educate students to be both leading scholars and informed, engaged citizens. Founded in 1754 as King’s College, Columbia University in the City of New York is the fifth oldest institution of higher learning in the United States.
About Columbia Technology Ventures
Columbia University's technology transfer office, Columbia Technology Ventures, manages Columbia's intellectual property portfolio and serves as the university's gateway for companies and entrepreneurs seeking novel technology solutions. Our core mission is to facilitate the transfer of inventions from academic research to outside organizations for the benefit of society on a local, national and global basis. For more information on Columbia Technology Ventures, please visit www.techventures.columbia.edu.

Margy Elliott | Newswise Science News
Further information:
http://www.columbia.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>