Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Resurrect Four-Billion-Year-Old Enzymes, Reveal Conditions of Early Life on Earth

08.04.2011
A team of scientists from Columbia University, Georgia Institute of Technology and the University of Granada in Spain have successfully reconstructed active enzymes from four-billion-year-old extinct organisms.

By measuring the properties of these enzymes, they could examine the conditions in which the extinct organisms lived. The results shed new light on how life has adapted to changes in the environment from ancient to modern Earth.

In their study, published in the journal Nature Structural & Molecular Biology, the researchers used vast amounts of genetic data to computationally reconstruct the genes of extinct species, a technique known as ancestral sequence reconstruction. The researchers then went a step further and synthesized the proteins encoded by these genes. They focused their efforts on a specific protein, thioredoxin, which is a vital enzyme found in all living cells.

Dr. Julio Fernandez, professor in Columbia’s Department of Biological Sciences, and his team conducted a detailed biophysical analysis of the reconstructed thioredoxin enzymes, using ultra-high resolution atomic force microscopy methods. “Given the ancient origin of the reconstructed thioredoxin enzymes, with some of them predating the buildup of atmospheric oxygen, we expected their catalytic chemistry to be simple,” said Dr. Fernandez, “Instead, we found that enzymes that existed in the Precambrian era up to four billion years ago possessed many of the same chemical mechanisms observed in their modern day relatives.”

Further examination of the ancient enzymes by Dr. Jose Sanchez-Ruiz’ group at the University of Granada in Spain revealed some striking features; the enzymes were highly resistant to temperature and were active in more acidic conditions. The findings suggest that the species hosting these ancient enzymes thrived in very hot environments that since then have progressively cooled down, and that they lived in oceans that were more acidic than today.

“By resurrecting proteins, we are able to gather valuable information about the adaptation of extinct forms of life to environmental alterations that cannot be uncovered through fossil record examinations,” said Dr. Eric Gaucher, an expert in ancestral sequence reconstruction at the Georgia Institute of Technology.

The researchers are now looking to apply their strategy to other enzymes to get a clearer picture of what life was like on early earth.

The work could have applications in biotechnology, where enzymes are playing an increasing role in many industrial processes. “The unique features we observe in the ancestral enzymes show that our technique could be adapted to generate enhanced enzymes for a wide range of applications,” remarked Pallav Kosuri, a graduate student and part of the team at Columbia University. “If we learn to harness these extinct features, we could potentially improve the efficiency of important processes such as the generation of biofuels,” he added. Columbia Technology Ventures, the technology transfer office at Columbia University, is working with the scientific team to explore commercial applications of the discoveries.

About Columbia University
A leading academic and research university, Columbia University continually seeks to advance the frontiers of knowledge and to foster a campus community deeply engaged in understanding and addressing the complex global issues of our time. Columbia’s extensive public service initiatives, cultural collaborations, and community partnerships help define the university’s underlying values and mission to educate students to be both leading scholars and informed, engaged citizens. Founded in 1754 as King’s College, Columbia University in the City of New York is the fifth oldest institution of higher learning in the United States.
About Columbia Technology Ventures
Columbia University's technology transfer office, Columbia Technology Ventures, manages Columbia's intellectual property portfolio and serves as the university's gateway for companies and entrepreneurs seeking novel technology solutions. Our core mission is to facilitate the transfer of inventions from academic research to outside organizations for the benefit of society on a local, national and global basis. For more information on Columbia Technology Ventures, please visit www.techventures.columbia.edu.

Margy Elliott | Newswise Science News
Further information:
http://www.columbia.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>