Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers restore missing protein in rare genetic brain disorder

09.09.2009
UCSF researchers have successfully used protease inhibitors to restore to normal levels a key protein involved in early brain development.

Reduced levels of that protein have been shown to cause the rare brain disorder lissencephaly, which is characterized by brain malformations, seizures, severe mental retardation and very early death in human infants.

The findings offer a proof-of-principle, at least in mice, that the genetic equivalent to human lissencephaly, also known as "smooth brain" disease, can be treated during pregnancy and effectively reversed to produce more normal offspring. Findings are reported in the September issue of "Nature Medicine" and found online at http://www.nature.com.

While the progress is still in animal models, the work is significant in being the first successful attempt to use protease inhibitors to reverse a severe brain defect that is known to be caused by limited quantities of one key gene, the researchers say.

The hope is that this approach also could be used to treat other defects in utero, or even those manifesting after birth, when caused by a partial deficiency in one gene, according to Anthony Wynshaw-Boris, MD, PhD, who is chief of the UCSF Division of Genetics in the Department of Pediatrics, and a member of the UCSF Institute for Human Genetics.

"Researchers have not considered it possible to treat such a pervasive, early developmental brain disorder as lissencephaly," said Wynshaw-Boris, who collaborated on the paper with Shinji Hirotsune, MD, PhD, in the Osaka City University Graduate School of Medicine. "Not only were we able to show a clear cellular effect from using these protease inhibitors, but also were able to treat the disorder in utero."

The work is the culmination of 15 years of collaborative research in the Wynshaw-Boris and Hirotsune labs into the cause and mechanisms of lissencephaly, which is caused by a deletion or loss of one copy of the LIS1 gene and affects an estimated one in 50,000-100,000 infants.

In 1998, the team published a paper on work that Hirotsune did in the Wynshaw-Boris laboratory, in which he produced a mouse with the same mutation that displayed defective brain development. They have continued to collaborate on understanding the mechanism of action of LIS1 since Hirotsune set up his independent laboratory in Japan.

The current research found, using these mice, that the protein calpain degrades the LIS1 protein to less than half its normal levels near the surface of the cells. The team then used a specific small-molecule protease inhibitor of calpain in these mice. At a cellular level, the protease inhibitors enabled LIS1 protein to be expressed at near-normal levels.

The team then gave daily injections of a calpain inhibitor to pregnant mice whose fetuses had the mouse-model of this defect. The resulting offspring had more normal brains and showed no sign of mental retardation.

"This study is really a proof-of-principle not only for treating complex developmental brain disorders, but also for any disorder with reduced protein levels where proteases normally play some role in breaking down that protein," Hirotsune said. "This will be much more difficult to apply to humans, because of the safety issues involved, but it could lead to new therapies that might be effective for a wide range of developmental disorders."

Scientists have known that loss of one of the two copies of the human form of the gene, known as LIS1, prevents immature nerve cells from migrating from deep in the brain up to the surface of the emerging cerebral cortex.

As a result, these immature cells stall at mid-point in their migration, causing the brain to develop a smooth surface, devoid of the convoluted nerve tissue that enables humans to think and function. The resulting disease, lissencephaly, varies in severity, but always leads to retardation, seizures and early childhood death.

The paper's joint lead authors were Masami Yamada and Yuko Yoshida, who, along with Daisuke Mori, Takako Takitoh and Hirotsune are with the Department of Genetic Disease Research, in the Osaka City University Graduate School of Medicine, in Japan. Other co-authors include Mineko Kengaku and Hiroki Umeshima, from the Institute for Integrated Cell-Material Sciences, Kyoto University; Keizo Takao and Tsuyoshi Miyakawa from Fujita Health University, the Genetic Engineering and Functional Genomics group in Kyoto University Faculty of Medicine, and the Japan Science and Technology Agency. Makoto Sato, in the University of Fukui Division of Cell Biology and Neuroscience, are also co-authors on the paper.

The study was funded by Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan. It was also supported by the Sagawa Foundation for Promotion of Cancer Research, the Cell Science Research Foundation, the Japan Spina Bifida & Hydrocephalus Research Foundation, Takeda Science Foundation, the Hoh-ansha Foundation and Knowledge Cluster Initiative Research Foundation and grants from the National Institutes of Health.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. For further information, please visit http://www.ucsf.edu.

Related links: Wynshaw-Boris lab: http://www.ucsf.edu/bms/faculty/wynshawboris.html

Kristen Bole | EurekAlert!
Further information:
http://www.ucsf.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>