Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers register new species using DNA-based description

25.01.2011
The previously unknown species of ribbon worm discovered in Kosterhavet National Park in 2007 has now been scientifically named using a new method. Pseudomicrura afzelii, a form of nemertean or ribbon worm, has been described and registered by researchers at the University of Gothenburg, Sweden, using DNA technology.

“We’ve shown that it’s possible to move away from the traditional, highly labour-intensive way of describing a new species. Developments in molecular biology have made it possible to determine the genetic code for selected parts of DNA both quickly and cheaply.”

So says Malin Strand who, together with Per Sundberg, had the non-traditional description of the new nemertean published in a scientific journal. They have also deposited a type specimen of the species at the Gothenburg Museum of Natural History together with a test tube containing the species’ unique DNA. Thus the species has been given its valid formal name and can be counted as a

Swedish species – and the two researchers have opened the door to new methods for determining species.

There are currently around 1.7 million known species of plant and animal, though the actual number is many times higher. To date, every new species has been described and named using the system introduced by Linnaeus in the 18th century, in other words on the basis of similarities of appearance. A species name is valid only once a detailed description of the species has been published and a type specimen has been deposited with a museum. This guarantees

the link between the name and the species, and prevents the same name from being used for different species. An international committee keeps track of all valid species names.

“The description of the species is an extremely important part of the naming process. A species without a name just doesn’t ‘exist’. Without valid names for species, our perception of biological diversity is skewed.”

However, this is a time-consuming process that in many cases involves expensive special techniques and specialist expertise. As a result, many new species are not described, but instead remain unprocessed.

Ribbon worms are an example of creatures that are traditionally described using anatomical characteristics, in other words how their internal organs such as intestines, blood vessels and brain are organised and what they look like. The recently published species description means that the two Gothenburg researchers are paving the way for more new species to be registered by linking

a species-specific DNA code to a name.

Malin Strand and Per Sundberg from the University of Gothenburg both have links with the Swedish Species Information Centre.

The article A DNA-based description of a new nemertean (phylum Nemertea) species has been published in the scientific journal Marine Biology Research.

Download the article from: http://dx.doi.org/10.1080/17451001003713563

For further information, please contact:
Malin Strand,
Department of Zoology, University of Gothenburg
+46 (0)70 565 4246
malin.strand@gu.se
Per Sundberg, Department of Zoology, University of Gothenburg
+46 (0)31 786 3658
+46 (0)70 567 3524
per.sundberg@zool.gu.se

Helena Aaberg | idw
Further information:
http://dx.doi.org/10.1080/17451001003713563
http://www.gu.se

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>