Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers register new species using DNA-based description

25.01.2011
The previously unknown species of ribbon worm discovered in Kosterhavet National Park in 2007 has now been scientifically named using a new method. Pseudomicrura afzelii, a form of nemertean or ribbon worm, has been described and registered by researchers at the University of Gothenburg, Sweden, using DNA technology.

“We’ve shown that it’s possible to move away from the traditional, highly labour-intensive way of describing a new species. Developments in molecular biology have made it possible to determine the genetic code for selected parts of DNA both quickly and cheaply.”

So says Malin Strand who, together with Per Sundberg, had the non-traditional description of the new nemertean published in a scientific journal. They have also deposited a type specimen of the species at the Gothenburg Museum of Natural History together with a test tube containing the species’ unique DNA. Thus the species has been given its valid formal name and can be counted as a

Swedish species – and the two researchers have opened the door to new methods for determining species.

There are currently around 1.7 million known species of plant and animal, though the actual number is many times higher. To date, every new species has been described and named using the system introduced by Linnaeus in the 18th century, in other words on the basis of similarities of appearance. A species name is valid only once a detailed description of the species has been published and a type specimen has been deposited with a museum. This guarantees

the link between the name and the species, and prevents the same name from being used for different species. An international committee keeps track of all valid species names.

“The description of the species is an extremely important part of the naming process. A species without a name just doesn’t ‘exist’. Without valid names for species, our perception of biological diversity is skewed.”

However, this is a time-consuming process that in many cases involves expensive special techniques and specialist expertise. As a result, many new species are not described, but instead remain unprocessed.

Ribbon worms are an example of creatures that are traditionally described using anatomical characteristics, in other words how their internal organs such as intestines, blood vessels and brain are organised and what they look like. The recently published species description means that the two Gothenburg researchers are paving the way for more new species to be registered by linking

a species-specific DNA code to a name.

Malin Strand and Per Sundberg from the University of Gothenburg both have links with the Swedish Species Information Centre.

The article A DNA-based description of a new nemertean (phylum Nemertea) species has been published in the scientific journal Marine Biology Research.

Download the article from: http://dx.doi.org/10.1080/17451001003713563

For further information, please contact:
Malin Strand,
Department of Zoology, University of Gothenburg
+46 (0)70 565 4246
malin.strand@gu.se
Per Sundberg, Department of Zoology, University of Gothenburg
+46 (0)31 786 3658
+46 (0)70 567 3524
per.sundberg@zool.gu.se

Helena Aaberg | idw
Further information:
http://dx.doi.org/10.1080/17451001003713563
http://www.gu.se

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>