Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Put Squeeze on Cells to Deliver

23.07.2013
Imagine being able to redirect powerful immune cells to fight cancer. How about reprogramming a diabetic’s skin cell into a cell that could manufacture the insulin their pancreas no longer produces? Could we dial down the production of fat cells in obese adolescents?

These are major health problems and medical challenges that may be more achievable with a new fundamental technology that gets vital control molecules into cells faster, safer, and more effectively.

NIBIB-funded engineers at the Massachusetts Institute of Technology (MIT) have developed a rapid and highly efficient system for transferring large molecules, nanoparticles, and other agents into living cells, providing new avenues for disease research and treatment. Cells carrying these “transferred molecules”– the intended therapy - can be used in many ways, including therapeutic and diagnostic interventions in patients and experimental therapies in animal models of disease.

The technique offers a powerful tool for probing how cells and their molecular components work by studying how transferred molecules affect a cell’s behavior and functions.

The system uses controlled mechanical force (relatively gentle squeezing) that is non-toxic to cells, unlike other methods that use viruses, chemicals or electric shock, which can kill cells and damage the transferred molecules. In addition, the new device is “high throughput,” which means it works rapidly, treating a remarkable 20,000-100,000 cells per second.

The speedy transfer of therapeutic molecules into cells with minimal cell damage and death allows millions of cells to be treated in a very short period of time. This is important because usually, large numbers of treated cells are needed to achieve diagnostic and therapeutic effects.

The system was developed through a collaboration between the laboratories of Robert Langer and Klavs Jensen, both at MIT. The work is published in the February 5 edition of the Proceedings of the National Academies of Science.

How it works

The device, known as a microfluidic delivery platform, is made up of channels etched into a silicon microchip through which cells initially can flow freely. However, as the cells move through the device --like an inner tube along a water slide-- the channel width narrows until a cell finds itself in a tight spot -- forced to fit through a space that is narrower than the cell. The supple cell membrane allows the cell to squeeze through the constriction. However, the forced, rapid change in cell shape creates temporary holes in the cell membrane, without permanently damaging or killing the cell.

While the cell membrane is temporarily disrupted, the molecules to be delivered pass through the holes in the membrane and enter the cell. As the cell rebounds to its normal shape, the holes in the membrane close; the cell is loaded successfully. Virtually any type of molecule can be delivered into large numbers of any type of cell.

New technique expands experimental and therapeutic possibilities

The new system has distinct advantages over those currently in use. For example, a common technique known as electroporation cannot successfully deliver nanoparticles because they get damaged or inactivated by the electric pulse that is applied to disrupt the cell membrane. Two such nanoparticles are quantum dots and gold nanoparticles, which can be used to track cells inside the body because their electrical properties make them highly visible using biological imaging techniques. Using the new MIT technique, which disrupts the cell membrane by mechanical force rather than an electrical pulse, the team successfully transferred these nanoparticles without damaging their electrical properties. Therefore, the new technique allows researchers to load these electrically sensitive nanoparticles into cells and follow them through the body to diagnose disease and monitor treatments.

Another significant advantage of the relatively gentle, yet highly effective technique is the ability to transfer molecules into fragile cells that do not survive the current methods. One such cell type is skin cells taken directly from an individual. Using the new mechanical force system the team successfully transferred a set of proteins into freshly obtained human skin cells, where the proteins acted to transform the skin cells into stem cells. Stem cells are an “all purpose” type of cell that scientists are eagerly working with to develop new regenerative therapies. The ability to easily make stem cells from an individual’s skin cells, using this new technique, is a significant step that promises to accelerate the development of stem cell based therapies to regenerate diseased or damaged tissues.

Some of the most exciting uses for this new system are likely to take the form of novel therapies. Armon Sharei, a graduate student in the Jensen laboratory and one of the lead developers of the technique, described a therapeutic application that the researchers are particularly excited about: “Our big push today is in the field of immunology. Immune cells are very resistant to traditional transfer techniques, yet they hold enormous therapeutic potential. In close collaboration with other laboratories, we hope to use this technology to harness the power of the patient’s own immune system to combat complex immune disorders that currently have no effective treatments.”

The project was supported partially by an American Recovery and Reinvestment Act (ARRA) NIH Challenge Grant. The special two-year grants supported research on Challenge Topics that addressed specific scientific and health research challenges in biomedical and behavioral research. Dr. Rosemarie Hunziker, the NIBIB Program Director for Tissue Engineering and Regenerative Medicine elaborates: “The goal of the ARRA awards was to support studies that could produce important innovations within a short time frame. We certainly achieved that here. This deceptively simple new way to control cell behavior offers exciting promise for studies of basic cell biology as well as enabling cell-based therapies previously only envisioned. Now that the basic principle has been established here, numerous novel applications can be pursued by diverse teams of scientists and engineers. It’s what we do at NIBIB--enable technologies capable of making a profound difference in medical care and the lives of patients.”

-- Tom Johnson

This work was funded by the National Institute of Biomedical Imaging and Bioengineering with additional support from the National Institute of Craniofacial and Dental Research and the National Cancer Institute

Margot Kern | Newswise
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>