Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers pursuing arthritis protein

10.01.2014
Inflammation Researchers at the University of Copenhagen have investigated a special protein that appears in inflammatory diseases such as arthritis, inflammatory bowel disease and psoriasis. The findings have just been published in the scientific journal PLOS ONE.

Chronic inflammation poses something of a mystery for researchers. If we become infected, the body immediately takes steps to repair and tidy it up. This process manifests itself as inflammation, which stems from a high level of activity in the immune cells, the body’s defence against bacteria and viruses.


The healthy blood cells stem from the blood bank at Rigshospitalet in Copenhagen, and more than 50 donors have been examined with the same result. Photo: Blood cells, Bruce Wetzel, Harry Schaefer, National Cancer Institute.

But it does not always go according to plan. Every so often, the body’s immune system over-reacts, and the inflammation develops into a chronic condition, resulting in diseases such as arthritis, inflammatory bowel disease and psoriasis. However, researchers are now a step closer to understanding what happens when the immune system over-reacts and causes chronic inflammation.

The healthy blood cells stem from the blood bank at Rigshospitalet in Copenhagen, and more than 50 donors have been examined with the same result. Photo: Blood cells, Bruce Wetzel, Harry Schaefer, National Cancer Institute.

“Through analysing blood cells, we have observed that a particular protein called TL1A can get healthy cells to behave like those we see in chronic inflammation. This is bringing us closer to unlocking the mystery of inflammation,” says Kirsten Reichwald, PhD student at the Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen. The results have been published in PLOS ONE.

Biological treatment fights arthritis

Today, doctors can use so-called biological medicines for treating arthritis, which has radically changed the outlook for patients. Biological treatment works by impeding the harmful substances that are partly responsible for advancing the chronic inflammation in the body. Almost 40 per cent of arthritis patients experience a positive effect when taking biological medicines.

“Existing biological treatment means that doctors today can halt the diseases instead of just relieving the symptoms,” explains Kirsten Reichwald.

However, in order to block the right substances, doctors need detailed information about the processes that cause chronic inflammation. The researchers therefore studied cells from 50 blood donors from the blood bank at Rigshospitalet in Copenhagen, and concluded that the protein TL1A has a key role in the development of the inflammation.

“Our latest findings tell us, that the TL1A protein takes part in driving the inflammation, and therefore it makes sense to try and block the protein with biological medicines,” says Kirsten Reichwald, who hopes that her future research will help to provide even more specific knowledge about inflammation.

Contact:

Kirsten Reichwald
Cell:+45 61 68 65 76

Kirsten Reichwald | EurekAlert!
Further information:
http://www.ku.dk

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>