Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers zero in on protein that may help treat obesity, diabetes

10.08.2011
A newly-identified protein may hold the key to keeping appetite and blood sugar in check, according to a study by York University researchers.

Suraj Unniappan, associate professor in York's Department of Biology, Faculty of Science & Engineering, is delving into the metabolic effects of a protein called nesfatin-1, abundantly present in the brain. His studies found that rats administered with nesfatin-1 ate less, used more stored fat and became more active. In addition, the protein stimulated insulin secretion from the pancreatic beta cells of both rats and mice.

"[The rats] actually ate more frequently but in lesser amounts," says Unniappan, a member of York's neuroscience graduate diploma program, and a recipient of a Canadian Institutes of Health Research (CIHR) New Investigator Award. "In addition, they were more active and we found that their fatty acid oxidization was increased. In other words, the energy reserve being preferably used during nesfatin-1 treatment was fat. This suggests more fat loss, which could eventually result in body weight loss," he says.

The findings were reported in two recent research articles from Unniappan's laboratory: one published today in Endocrinology and another in March 2011 in Journal of Endocrinology.

Discovered by a research team from Japan in 2006, nesfatin-1 was earlier found to regulate appetite and the production of body fat when injected into the brain of mice and rats.

Unniappan's findings indicate that the protein stimulates insulin secretion from the pancreas, a glandular organ, which contains clusters of cells called the islets of Langerhans. These islets produce several important hormones, including the primary glucose-lowering hormone, insulin.

Previously, Unniappan's team studied mice and found similar results; not only was insulin secretion stimulated, but nesfatin-1 was observed to be lowered in the pancreatic islets of mice with Type 1 diabetes and increased in those with Type 2 diabetes. In Type 1 diabetes, the body no longer produces insulin due to the destruction of cells within the pancreas. In Type 2 diabetes, the body becomes insulin resistant, and obesity often results.

Unniappan's research, conducted in the Laboratory of Integrative Neuroendocrinology, focuses on identifying and examining the biological effects of gut and brain-derived appetite-regulatory and metabolic hormones in fish and mammals.

"We call this the 'gut-brain axis,'" says Unniappan. "While the brain is involved in many factors that regulate our energy balance, the gut is also responsible for many neural and endocrine signals responsible for regulating hunger, satiety and blood sugar levels. A major question we're trying to address is how these peptides act and interact with other peptides in the endocrine network – which is so complex – in order to maintain steady blood glucose levels and body weight," he says.

A better understanding of this gut-brain axis could contribute to developing potential pharmacological interventions for diabetes and obesity.

"New hormone-based treatments that would suppress body weight and blood sugar would be very desirable. However, we are far from developing nesfatin-1 as a candidate molecule. Our current research focuses on further exploring the therapeutic potential of nesfatin-1 in metabolic diseases with debilitating complications," Unniappan says.

The lead author of both publications is Ronald Gonzalez, a recently graduated PhD student from Unniappan's lab. The research was conducted in close collaboration with co-authors and York professors Robert Tsushima and Rolando Ceddia. Unniappan's research is supported by grants from CIHR, the Natural Sciences and Engineering Research Council of Canada, (NSERC), the Canada Foundation for Innovation (CFI), the Ontario Ministry of Research and Innovation, and the James H. Cummings Foundation.

York University is the leading interdisciplinary research and teaching university in Canada. York offers a modern, academic experience at the undergraduate and graduate level in Toronto, Canada's most international city. The third largest university in the country, York is host to a dynamic academic community of 50,000 students and 7,000 faculty and staff, as well as 200,000 alumni worldwide. York's 10 Faculties and 28 research centres conduct ambitious, groundbreaking research that is interdisciplinary, cutting across traditional academic boundaries. This distinctive and collaborative approach is preparing students for the future and bringing fresh insights and solutions to real-world challenges. York University is an autonomous, not-for-profit corporation.

Please note: Professor Unniappan is out of the country and currently available for e-mail or Skype interviews only.

Media Contact:

Melissa Hughes, Media Relations, York University, 416 736 2100 x22097, mehughes@yorku.ca

Melissa Hughes | EurekAlert!
Further information:
http://www.yorku.ca

Further reports about: Diabetes Protein Science TV blood glucose level blood sugar insulin secretion

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>