Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers zero in on protein that destroys HIV

25.08.2010
Using a $225,000 microscope, researchers have identified the key components of a protein called TRIM5a that destroys HIV in rhesus monkeys.

The finding could lead to new TRIM5a-based treatments that would knock out HIV in humans, said senior researcher Edward M. Campbell, PhD, of Loyola University Health System.

Campbell and colleagues report their findings in an article featured on the cover of the Sept. 15, 2010 issue of the journal Virology, now available online.

In 2004, other researchers reported that TRIM5a protects rhesus monkeys from HIV. The TRIM5a protein first latches on to a HIV virus, then other TRIM5a proteins gang up and destroy the virus.

Humans also have TRIM5a, but while the human version of TRIM5a protects against some viruses, it does not protect against HIV.

Researchers hope to turn TRIM5a into an effective therapeutic agent. But first they need to identify the components in TRIM5a that enable the protein to destroy viruses. “Scientists have been trying to develop antiviral therapies for only about 75 years," Campbell said. "Evolution has been playing this game for millions of years, and it has identified a point of intervention that we still know very little about."

TRIM5a consists of nearly 500 amino acid subunits. Loyola researchers have identified six 6 individual amino acids, located in a previously little-studied region of the TRIM5a protein, that are critical in the ability of the protein to inhibit viral infection. When these amino acids were altered in human cells, TRIM5a lost its ability to block HIV-1 infection. (The research was done on cell cultures; no rhesus monkeys were used in the study.)

By continuing to narrow their search, researchers hope to identify an amino acid, or combination of amino acids, that enable TRIM5a to destroy HIV. Once these critical amino acids are identified, it might be possible to genetically engineer TRIM5a to make it more effective in humans. Moreover, a better understanding of the underlying mechanism of action might enable the development of drugs that mimic TRIM5a action, Campbell said.

In their research, scientists used Loyola's wide-field "deconvolution" microscope to observe how the amino acids they identified altered the behavior of TRIM5a. They attached fluorescent proteins to TRIM5a to, in effect, make it glow. In current studies, researchers are fluorescently labeling individual HIV viruses and measuring the microscopic interactions between HIV and TRIM5a.

"The motto of our lab is one of Yogi Berra's sayings -- 'You can see a lot just by looking,'" Campbell said.

Campbell is an assistant professor in the Department of Microbiology and Immunology at Loyola University Chicago Stritch School of Medicine. His co-authors are Jaya Sastri, a Stritch graduate student and first author; Christopher O'Connor, a former post-doctorate researcher at Stritch; Cindy Danielson and Michael McRaven of Northwestrn University Feinberg School of Medicine and Patricio Perez and Felipe Diaz-Griffero of Albert Einstein College of Medicine.

The study was supported by a grant from the National Institutes of Health.

Based in the western suburbs of Chicago, Loyola University Health System is a quaternary care system with a 61-acre main medical center campus, the 36-acre Gottlieb Memorial Hospital campus and 28 primary and specialty care facilities in Cook, Will and DuPage counties. The medical center campus is conveniently located in Maywood, 13 miles west of the Chicago Loop and 8 miles east of Oak Brook, Ill. The heart of the medical center campus, Loyola University Hospital, is a 561-licensed-bed facility. It houses a Level 1 Trauma Center, a Burn Center and the Ronald McDonald® Children's Hospital of Loyola University Medical Center. Also on campus are the Cardinal Bernardin Cancer Center, Loyola Outpatient Center, Center for Heart & Vascular Medicine and Loyola Oral Health Center as well as the LUC Stritch School of Medicine, the LUC Marcella Niehoff School of Nursing and the Loyola Center for Fitness. Loyola's Gottlieb Memorial Hospital campus in Melrose Park includes the 264-bed community hospital, the Gottlieb Center for Fitness and the Marjorie G. Weinberg Cancer Care Center.

Jim Ritter | EurekAlert!
Further information:
http://www.lumc.edu

Further reports about: HIV HIV virus LUC Loyola Medicine School TRIM5a amino acid health services human cell rhesus monkeys

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>