Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers could use plant's light switch to control cells

01.11.2010
Chandra Tucker shines a blue light on yeast and mammalian cells in her Duke University lab and the edges of them start to glow. The effect is the result of a light-activated switch from a plant that has been inserted into the cell.

Researchers could use this novel "on-off switch" to control cell growth or death, grow new tissue or deliver doses of medication directly to diseased cells, said Tucker, an assistant research professor in the biology department at Duke.

She and colleagues created the switch by genetically inserting two proteins from a mustard plant, Arabidopsis thaliana, into yeast cells, kidney cells and cultured rodent brain tissue. The two proteins interact under light to provide the control over cell functions.

The switch is similar to one described last year where researchers genetically inserted a different light-receptive plant protein and its interacting protein partner from Arabidopsis into mammalian cells. In response to red light, these proteins interacted to cause mammalian cells to change shape, moving in the direction of the light.

Tucker's switch uses Arabidopsis proteins that respond to blue light. Unlike the red-light activated proteins, which need an added cofactor, a chemical that is required for the light response, the blue-light switch doesn't need any additional chemicals to work because it uses a cofactor that naturally exists in non-plant organisms.

"It's hard to deliver a chemical to a fly or to individual cells. This new approach, with one of the molecules already in the mammalian or yeast cells, makes building a light-controlled switch a lot easier," Tucker said. Her team describes the switch in the Oct. 31 Nature Methods.

To test the switch, the team fused one of the light-sensitive Arabidopsis proteins to a red fluorescent protein and the other to a green fluorescent protein, which was in turn attached to the cell membrane. When the researchers flashed blue light on the cell, the plant proteins interacted, causing the red fluorescent protein to rapidly move to the cell membrane, which then glowed yellow due to the merging of the red and green fluorescing proteins. The team found that this interaction was reversible and could be triggered repeatedly with light exposure.

The switch is one among several that have been designed to give researchers better control of different functions of the cell. The next step in developing the switch will be to make the interacting proteins more effective, Tucker said. The approach is expected to be applicable not only for studies in cultured cells and yeast, but also worms, fruit flies, mice and other model organisms. Eventually this method could allow researchers to test how cells in a tissue affect neighboring cells in a tissue, to guide axon growth in neurons to repair brain tissue, or even to kill cancer cells.

Tucker's new approach will be a "major boon" to those who wish to apply light activation to their own experimental systems, said Klaus Hahn, a pharmacologist at the University of North Carolina at Chapel Hill, whose lab reported on another blue-light responsive protein to control movement of mammalian cells last year.

Hahn said the "elegant work will likely see broad use, in many fields and for applications that will surprise us," and it is already going to be applied to important areas of research, such as control of gene expression.

Ashley Yeager | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>