Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Pinpoint Key Stem Cells for Eating and Sex

23.07.2010
GW’s Dr. Anthony-Samuel LaMantia Publishes Research on Neural Precursors in the Developing Olfactory Ephithelium

New research, published in the journal Development, by Dr. Anthony-Samuel LaMantia, professor of Pharmacology & Physiology and director of the newly formed GW Institute for Neuroscience, and his colleagues have identified the stem cells that generate three critical classes of nerve cells – olfactory receptors (ORNs), vomeronasal (VRNs) and gonadotropin releasing hormone (GnRH) neurons – that are responsible for enabling animals and humans, to eat, interact socially and reproduce.

This research is the first evidence identfying these stem cells. By studying mice at the earliest stages of embryonic development, LaMantia and his colleagues were able to identify the location of these cells, confirm that they divide slowly and symmetrically—thus making more stem cells, have a distinct molecular identity, and give rise to all cell types in the tissue—including ORNs, VRNs and GnRH neurons. These embryonic olfactory stem cells also are ultimately responsible for generating stem cells that remain in the lining of the nose throughout life and make new ORNs and VRNs. Thus these stem cells are also essential to enable a rare example of nervous system regeneration that continues throughout life.

“By identifying these stems cells, our research will help physicians understand why people have certain genetic, neurological, and mental disabilities. Olfaction is often compromised early in the course of a number of serious diseases including autism, schizophrenia, and Alzheimer’s disease, and GnRH deficiency is important in many cases of infertility. It is my hope that in the future, we will combine this sort of cell and molecular biology with clinical practice to develop better treatments for patients with these disorders,” said Dr. LaMantia.

To identify the early olfactory stem cell, Dr. LaMantia and his colleagues used multiple methods to define the identity and potential of dividing cells in the embryonic tissue that eventually becomes the nasal epithelium—the sheet of nerve cells that lines the nasal cavity. The researchers studied these tissues using molecular markers to distinguish different classes of cells and recombinant DNA technology as well as mutant mice to assess how several key genes define olfactory stem cell identity. They found a subset of cells that divide slowly and symmetrically—suggesting that these were indeed, the stem cells. They also showed that these cells were self renewing—another essential characteristic of stem cells. They defined several molecules that influence whether these stem cells remain as stem cells or divide terminally to make olfactory, vomeronasal and GnRH neurons. Finally, they showed that these stem cells uniquely give rise to ORNs, VRNs, and GnRH neurons.

To learn more about this research, view the journal Development article: http://dev.biologists.org/content/137/15/2471

Dr. LaMantia is available for comment. Please contact Anne Banner at the GW Medical Center Communications and Marketing at 202-994-2261.

About The George Washington University Medical Center
The George Washington University Medical Center is an internationally recognized interdisciplinary academic health center that has consistently provided high-quality medical care in the Washington, D.C. metropolitan area since 1824. The Medical Center comprises the School of Medicine and Health Sciences, the 11th oldest medical school in the country; the School of Public Health and Health Services, the only such school in the nation’s capital; GW Hospital, jointly owned and operated by a partnership between The George Washington University and a subsidiary of Universal Health Services, Inc.; and The GW Medical Faculty Associates, an independent medical practice with nearly 550 physicians in 47 clinical specialties.

Melissa Kadish | Newswise Science News
Further information:
http://www.gwumc.edu

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>