Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers pinpoint a new enemy for tumor-suppressor p53

Researchers at The University of Texas M. D. Anderson Cancer Center have identified a protein that marks the tumor suppressor p53 for destruction, providing a potential new avenue for restoring p53 in cancer cells.

The new protein, called Trim24, feeds p53 to a protein-shredding complex known as the proteasome by attaching targeting molecules called ubiquitins to the tumor suppressor, the team reported this week in the Proceedings of the National Academy of Sciences Online Early Edition.

"Targeting Trim24 may offer a therapeutic approach to restoring p53 and killing tumor cells," said senior author Michelle Barton, Ph.D., professor in M. D. Anderson's Department of Biochemistry and Molecular Biology.

The discovery is based on an unusual approach to studying p53, which normally forces potentially cancerous cells to kill themselves and is shut down or depleted in most human cancers. Studies of the p53 protein and gene tend to focus on cancer cell lines or tumors, where the dysfunction already is established, Barton said. "We wanted to purify p53 from normal cells to better understand the mechanisms that regulate it."

The team developed a strain of mice with a biochemical tag attached to every p53 protein expressed. After first assuring that the tagged p53 behaved like normal p53, the team then used the tag, or hook, to extract the protein. "We could then identify proteins that were attached to p53, interacting with it, through mass spectrometry," Barton said.

They found Trim24, a protein previously unassociated with p53 that is highly expressed in tumors and is a target of two known oncogenes in distinct forms of leukemia and thyroid cancer.

Subsequent experiments showed that decreased levels of Trim24 led to increased levels of p53 expression in the cell nucleus, and increasing Trim24 expression reduced p53 levels. Loss of Trim24 expression in a breast cancer cell line caused spontaneous programmed cell death - apoptosis. A similar response was confirmed in human lung, colon and prostate cancer cells.

Treating cells with a proteasome inhibitor also led to increased p53 expression. Removing an important binding domain of Trim24 or depleting it completely both led to greatly reduced ubiquitin targeting of p53.

An analogous system in fruit flies showed that a simpler version of Trim24 in the flies plays a similar role regulating p53, demonstrating that the relationship is evolutionarily conserved.

Co-authors with Barton are first author Kendra Allton, Abhinav Jain, Ph.D., Hans-Martin Herz, Ph.D., Wen-Wei Tsai, Ph.D., Andres Bergmann, Ph.D., and Randy Johnson, Ph.D., all of M. D. Anderson's Department of Biochemistry and Molecular Biology; and Sung Yun Jung, Ph.D., and Jun Qin, Ph.D., of the Department of Molecular and Cellular Biology at Baylor College of Medicine. Allton completed the paper as her master's degree thesis for The University of Texas Graduate School of Biomedical Sciences, a joint program of M. D. Anderson and The University of Texas Health Science Center at Houston. Allton, Jain, Tsai, Johnson and Barton also are with M. D. Anderson's Center for Stem Cell and Developmental Biology.

Funding for the project was provided by M. D. Anderson's Kleberg Fund for Innovative Research, grants from the National Institutes of Health, CellCentric, Ltd., the Kadoorie Foundation, the Welch Foundation, the National Cancer Institute and the Laura and John Arnold Foundation Odyssey Fellowship (for Abhinav Jain).

About M. D. Anderson

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For four of the past six years, including 2008, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>