Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers pinpoint a new enemy for tumor-suppressor p53

30.06.2009
Researchers at The University of Texas M. D. Anderson Cancer Center have identified a protein that marks the tumor suppressor p53 for destruction, providing a potential new avenue for restoring p53 in cancer cells.

The new protein, called Trim24, feeds p53 to a protein-shredding complex known as the proteasome by attaching targeting molecules called ubiquitins to the tumor suppressor, the team reported this week in the Proceedings of the National Academy of Sciences Online Early Edition.

"Targeting Trim24 may offer a therapeutic approach to restoring p53 and killing tumor cells," said senior author Michelle Barton, Ph.D., professor in M. D. Anderson's Department of Biochemistry and Molecular Biology.

The discovery is based on an unusual approach to studying p53, which normally forces potentially cancerous cells to kill themselves and is shut down or depleted in most human cancers. Studies of the p53 protein and gene tend to focus on cancer cell lines or tumors, where the dysfunction already is established, Barton said. "We wanted to purify p53 from normal cells to better understand the mechanisms that regulate it."

The team developed a strain of mice with a biochemical tag attached to every p53 protein expressed. After first assuring that the tagged p53 behaved like normal p53, the team then used the tag, or hook, to extract the protein. "We could then identify proteins that were attached to p53, interacting with it, through mass spectrometry," Barton said.

They found Trim24, a protein previously unassociated with p53 that is highly expressed in tumors and is a target of two known oncogenes in distinct forms of leukemia and thyroid cancer.

Subsequent experiments showed that decreased levels of Trim24 led to increased levels of p53 expression in the cell nucleus, and increasing Trim24 expression reduced p53 levels. Loss of Trim24 expression in a breast cancer cell line caused spontaneous programmed cell death - apoptosis. A similar response was confirmed in human lung, colon and prostate cancer cells.

Treating cells with a proteasome inhibitor also led to increased p53 expression. Removing an important binding domain of Trim24 or depleting it completely both led to greatly reduced ubiquitin targeting of p53.

An analogous system in fruit flies showed that a simpler version of Trim24 in the flies plays a similar role regulating p53, demonstrating that the relationship is evolutionarily conserved.

Co-authors with Barton are first author Kendra Allton, Abhinav Jain, Ph.D., Hans-Martin Herz, Ph.D., Wen-Wei Tsai, Ph.D., Andres Bergmann, Ph.D., and Randy Johnson, Ph.D., all of M. D. Anderson's Department of Biochemistry and Molecular Biology; and Sung Yun Jung, Ph.D., and Jun Qin, Ph.D., of the Department of Molecular and Cellular Biology at Baylor College of Medicine. Allton completed the paper as her master's degree thesis for The University of Texas Graduate School of Biomedical Sciences, a joint program of M. D. Anderson and The University of Texas Health Science Center at Houston. Allton, Jain, Tsai, Johnson and Barton also are with M. D. Anderson's Center for Stem Cell and Developmental Biology.

Funding for the project was provided by M. D. Anderson's Kleberg Fund for Innovative Research, grants from the National Institutes of Health, CellCentric, Ltd., the Kadoorie Foundation, the Welch Foundation, the National Cancer Institute and the Laura and John Arnold Foundation Odyssey Fellowship (for Abhinav Jain).

About M. D. Anderson

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For four of the past six years, including 2008, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>