Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers To Perform Sex Change Operation On Papaya

02.11.2009
The complicated sex life of the papaya is about to get even more interesting, thanks to a $3.1 million grant from the National Science Foundation.

The NSF grant will fund basic research on the papaya sex chromosomes and will lead to the development of a papaya that produces only hermaphrodite offspring, an advance that will enhance papaya health while radically cutting papaya growers’ production costs and their use of fertilizers and water.

“We’re going to change the sex of the papaya to help the farmers,” said University of Illinois plant biology professor Ray Ming, who will lead the effort with researchers from the Hawaii Agriculture Research Center, Texas A&M University and Miami University. A USDA scientist also will collaborate on the initiative.

“This is a perfect case to demonstrate how basic science can help the farmers directly,” Ming said. “In our case we can apply it immediately as a byproduct of the research program.”

Papayas already come in three sexual varieties: male, female and hermaphrodite. The hermaphrodite produces the flavorful fruit that is sold commercially. From the grower’s perspective, however, hermaphrodite plants come with a severe handicap: their seeds produce some female plants (which are useless commercially) and some hermaphrodite

The problem is exacerbated by the fact that it is impossible to tell the sex of a seed until it has grown up and flowered. This means that papaya farmers must plant five or more seeds together to maximize the likelihood of obtaining at least one hermaphrodite plant. Once they identify a desired plant, they cut the others down.

“This is labor intensive, resource intensive,” Ming said. Crowding also causes the plants to “develop a poor root system and small canopy that delays fruit production,” he said.

Ming co-led an international team that produced a first draft of the papaya genome in 2008. This draft, which sequenced more than 90 percent of the plant’s genes, offered new insights into the evolution of flowering plants in general, and the unusual sexual evolution of the papaya.

Ming and his colleagues have identified regions of interest on the papaya’s three sex chromosomes: the X, Y, and Yh. (XX produces a female plant, XY a male, and XYh a hermaphrodite. All combinations of Y and Yh fail to develop beyond the early embryonic stage after pollination.)

The Y and Yh chromosomes contain genes that promote the development of the male reproductive organ, the stamen, in male and hermaphrodite trees. And, the researchers hypothesize, the Y chromosome also contains a gene that disables the development of the female sexual organ, the carpel. The researchers theorize that the Yh chromosome lacks the gene that turns off development of the carpel, however, allowing both male and female organs to grow in XYh plants.

The researchers will focus on finding these genes and testing their hypotheses, Ming said. And once they have identified the sex-determining genes of the Y chromosome, they will move the gene responsible for stamen development into the female genome and change the sex from female to hermaphrodite – without the Yh chromosome.

The resulting hermaphrodite will produce only hermaphrodite seeds, Ming said, eliminating a major headache for farmers while improving the health of the papayas and the environment.

Further research will explore the origin and evolution of the sex chromosomes by comparing the papaya to five other related species in two genera and by conducting population genetic studies of the papaya sex chromosomes.

Ming is also an affiliate of the Institute for Genomic Biology at Illinois.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>