Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers To Perform Sex Change Operation On Papaya

02.11.2009
The complicated sex life of the papaya is about to get even more interesting, thanks to a $3.1 million grant from the National Science Foundation.

The NSF grant will fund basic research on the papaya sex chromosomes and will lead to the development of a papaya that produces only hermaphrodite offspring, an advance that will enhance papaya health while radically cutting papaya growers’ production costs and their use of fertilizers and water.

“We’re going to change the sex of the papaya to help the farmers,” said University of Illinois plant biology professor Ray Ming, who will lead the effort with researchers from the Hawaii Agriculture Research Center, Texas A&M University and Miami University. A USDA scientist also will collaborate on the initiative.

“This is a perfect case to demonstrate how basic science can help the farmers directly,” Ming said. “In our case we can apply it immediately as a byproduct of the research program.”

Papayas already come in three sexual varieties: male, female and hermaphrodite. The hermaphrodite produces the flavorful fruit that is sold commercially. From the grower’s perspective, however, hermaphrodite plants come with a severe handicap: their seeds produce some female plants (which are useless commercially) and some hermaphrodite

The problem is exacerbated by the fact that it is impossible to tell the sex of a seed until it has grown up and flowered. This means that papaya farmers must plant five or more seeds together to maximize the likelihood of obtaining at least one hermaphrodite plant. Once they identify a desired plant, they cut the others down.

“This is labor intensive, resource intensive,” Ming said. Crowding also causes the plants to “develop a poor root system and small canopy that delays fruit production,” he said.

Ming co-led an international team that produced a first draft of the papaya genome in 2008. This draft, which sequenced more than 90 percent of the plant’s genes, offered new insights into the evolution of flowering plants in general, and the unusual sexual evolution of the papaya.

Ming and his colleagues have identified regions of interest on the papaya’s three sex chromosomes: the X, Y, and Yh. (XX produces a female plant, XY a male, and XYh a hermaphrodite. All combinations of Y and Yh fail to develop beyond the early embryonic stage after pollination.)

The Y and Yh chromosomes contain genes that promote the development of the male reproductive organ, the stamen, in male and hermaphrodite trees. And, the researchers hypothesize, the Y chromosome also contains a gene that disables the development of the female sexual organ, the carpel. The researchers theorize that the Yh chromosome lacks the gene that turns off development of the carpel, however, allowing both male and female organs to grow in XYh plants.

The researchers will focus on finding these genes and testing their hypotheses, Ming said. And once they have identified the sex-determining genes of the Y chromosome, they will move the gene responsible for stamen development into the female genome and change the sex from female to hermaphrodite – without the Yh chromosome.

The resulting hermaphrodite will produce only hermaphrodite seeds, Ming said, eliminating a major headache for farmers while improving the health of the papayas and the environment.

Further research will explore the origin and evolution of the sex chromosomes by comparing the papaya to five other related species in two genera and by conducting population genetic studies of the papaya sex chromosomes.

Ming is also an affiliate of the Institute for Genomic Biology at Illinois.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>