Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers using parallel processing computing could save thousands by using an Xbox

15.09.2009
XBox 360 Chip Shows Some Cardiac Arrhythmia are Unpredictable

A new study by a University of Warwick researcher has demonstrated that researchers trying to model a range of processes could use the power and capabilities of a particular XBox chip as a much cheaper alternative to other forms of parallel processing hardware.

Dr Simon Scarle, a researcher in the University of Warwick’s WMG Digital Laboratory, wished to model how electrical excitations in the heart moved around damaged cardiac cells in order to investigate or even predict cardiac arrhythmias (abnormal electrical activity in the heart which can lead to a heart attack). To conduct these simulations using traditional CPU based processing one would normally need to book time on a dedicated parallel processing computer or spend thousands on a parallel network of PCs.

Dr Scarle however also had a background in the computer games industry as he had been a Software Engineer at the Warwickshire firm Rare Ltd, part of Microsoft Games Studios. His time there made him very aware of the parallel processing power of Graphical Processing Unit (GPU) of the XBox 360, the popular computer games console played in many homes. He was convinced that this chip could, for a few hundred pounds, be employed to conduct much the same scientific modelling as several thousand pounds of parallel network PCs.

The results of his work have just been published in the journal Computational Biology and Chemistry under the title of “Implications of the Turing completeness of reaction-diffusion models, informed by GPGPU simulations on an XBox 360: Cardiac arrhythmias, re-entry and the Halting problem”. The good news is that his hunch was right and the XBox 360 GPU can indeed be used by researchers in exactly the money saving way he envisaged. Simon Scarle said:

“This is a highly effective way of carrying out high end parallel computing on “domestic” hardware for cardiac simulations. Although major reworking of any previous code framework is required, the Xbox 360 is a very easy platform to develop for and this cost can easily be outweighed by the benefits in gained computational power and speed, as well as the relative ease of visualization of the system.” However his research does have some bad news for a particular set of cardiac researchers in that his study demonstrates that it is impossible to predict the rise of certain dangerous arrhythmias, as he has shown that cardiac cell models are affected by a specific limitation of computational systems known as the Halting problem.

For further information please contact:

Dr Simon Scarle, WMG, University of Warwick
Tel: +44(0)7983 342513 S.Scarle@warwick.ac.uk
Peter Dunn, Press and Media Relations Manager, Communications Office,
University House University of Warwick, Coventry CV4 8UW
+44 (0)24 76 523708 or +44(0)7767 655860 email: p.j.dunn@warwick.ac.uk
Twitter @PeterJDunn

Dr Simon Scarle | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>