Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers mobilizing global resources to test new treatments for severe H1N1 infection

12.11.2009
Quick 'bench-to-bedside' clinical trial would enroll 1,400 influenza patients to test corticosteroids and statins as potential treatments

An important, ground-breaking initiative is unfolding in the global critical care community in response to the H1N1 pandemic.

While front-line health care workers and infectious disease experts around the world are working round the clock to control, treat and prevent H1N1 infection, those who deal with the most severely ill patients—physicians working in hospital intensive care units (ICUs)—have joined forces to develop a more coordinated, long-term approach to H1N1.

In a commentary published today in the medical journal the Lancet, St. Michael's Hospital's Dr. John Marshall describes this unprecedented initiative, which is called the International Forum for Acute Care Trialists (InFACT) H1N1 Collaboration. While the coalition against H1N1 is led by Canadians, dozens of groups whose members are involved in the care of critically ill influenza patients from every continent on the planet have already signed on.

"A core element of our initiative is to undertake clinical trials of simple, readily available and biologically plausible interventions that can be used to treat patients with severe H1N1 infection," says Dr. Marshall, a senior scientist in the Li Ka Shing Knowledge Institute at St. Michael's Hospital in Toronto who chairs the InFACT collaboration.

Will the clinical trials and the other initiatives planned by InFACT—such as a global registry of influenza victims and a "biobank" of blood samples—benefit people who are already sick or will fall ill over the next few months?

"Probably not," Dr. Marshall says. "But H1N1 isn't going away any time soon. We need to take a coordinated, evidence-based approach to understanding the natural history of the disease, to cataloguing current resources and gaps, and to looking for new and better treatments which may prevent or shorten hospitalization among those most seriously affected."

Proposed clinical trials to test new treatments

Canadian researchers are organizing several clinical trials aimed at finding new and more effective treatments for H1N1 infection.

One of these trials—the Collaborative H1N1 Adjuvant Treatment (CHAT) trial—seeks to enroll 1,400 patients, most of them Canadians, who are being treated in a hospital ICU for severe H1N1 infection and are on a ventilator. The mortality rate for these patients currently ranges from 10% over the first month. On average, those who survive spend two weeks in the ICU.

Right now H1N1 infection is treated with anti-viral drugs and other supportive measures. But researchers want to evaluate two classes of common, readily available drugs which have shown promise in limiting the severity of H1N1 infection.

"Anecdotal reports and data from animal studies suggest that corticosteroids and statins may dampen the inflammatory response that leads to severe illness and death from H1N1," says Dr. Marshall. "None of these drugs has been adequately studied for efficacy."

Even though no specific data show them to be effective, right now more than half of patients with severe H1N1 infection are treated with corticosteroids—hormones given to reduce swelling and decrease the body's immune response. This is based largely on the observation that corticosteroid drugs have proven useful in treating severe acute lung injury.

A recent study of patients with seasonal influenza found that those who were taking statins when they got sick had a better prognosis than those were not. These drugs are currently taken by millions of people take to help control cholesterol levels and prevent heart disease.

This accelerated "bench-to-bedside" approach is key to success against pandemic influenza and other infectious diseases, says Dr. Marshall. "Research during a pandemic poses unique ethical and logistical challenges. It usually takes years to mount a major clinical trial. But in the case of H1N1 our goal is to drastically shorten this to a period of weeks or a few months without compromising scientific and ethical integrity," he explains.

While funding is needed for the clinical trials to proceed, that time is too short to achieve this through conventional means. "Instead, we've adopted an incremental funding strategy. This means we're seeking money that will allow us to launch the trials and moving ahead with confidence that additional funds can be found," he says.

About the InFACT H1N1 Collaboration

The Canadian-led International Forum for Acute Care Trialists (InFACT) H1N1 Collaboration is a unique and unprecedented attempt to gain control over a new pandemic illness (go to http://www.infactglobal.org).

According to Dr. John Marshall who chairs the group, it is currently organized around three core initiatives:

A common global registry listing all patients critically ill due to H1N1 infection. The registry, which has been created out of five existing databases around the world, will enable real-time study of the epidemiology, clinical course, and treatment of severe H1N1 disease. In parallel, the group hopes to develop a "biobank"—a repository of samples of blood and other material taken from people infected with H1N1—which will allow for studies of genetic susceptibility and clinical biology. The registry will also help scientists understand how H1N1 infection varies around the world in response to local medical capacity and treatment approaches.

A program of accelerated randomized clinical trials aimed at quickly identifying, testing and delivering new treatments. The first group of clinical studies will evaluate inexpensive interventions that are available in both the developed and the developing world. The research will use so-called "adaptive designs" which ensures that positive results can be quickly incorporated into practice and that ineffective treatments are quickly dropped.

The first-ever catalogue of critical care capacity around the world. Any coordinated and effective plan for dealing with H1N1 or another severe pandemic illness requires a host of resources—hospital ICU beds and ventilators, a steady supply of vaccines and medications, and enough health care providers to use them. The group hopes to catalogue international critical care capacity, and also to promote, mentor, and support clinical research activities in resource-poor areas where the human toll is likely to be the greatest.

About the H1N1 Pandemic

The new influenza strain is already a problem that is being felt by professionals across the health care spectrum—from those working to develop and deliver an effective vaccine to those treating the severest cases of H1N1 infection in hospital ICUs.

By early October, 2009, there had been more than 340,000 reported cases of H1N1 infection in 191 countries and more than 4,100 deaths. The World Health Organization initially projected that up to two billion people could become infected over a two-year period. While vaccination programs and other factors should reduce this number, it's estimated that between 200,000 to 10 million people infected by H1N1 might be sick enough to require intensive care in hospital.

About the Canadian Critical Care Trials Group (CCCTG)

The CCCTG is the oldest and most successful investigator-led critical care research group in the world. Since it was founded in 1989, scientists working under its umbrella have published more than 75 papers on the care and treatment of critically ill patients. It has served as a model for similar groups in Australia, Scandinavia, the United Kingdom, the Middle East, and Europe. The group does not currently receive core funding from peer-review granting agencies. Instead it relies on the "dedication and collegiality" of its members.

St. Michael's Hospital provides compassionate care to all who walk through its doors. The Hospital also provides outstanding medical education to future health care professionals in more than 23 academic disciplines. Critical care and trauma, heart disease, neurosurgery, diabetes, cancer care, and care of the homeless are among the Hospital's recognized areas of expertise. Through the Keenan Research Centre and the Li Ka Shing Knowledge Institute, research at St. Michael's Hospital is recognized and put into practice around the world. Founded in 1892, the Hospital is fully affiliated with the University of Toronto.

Julie Saccone | EurekAlert!
Further information:
http://www.stmichaelshospital.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>