Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Mirror Human Response to Bacterial Infection and Resolution in Mice

16.12.2011
Imitating human diseases using an animal model is a difficult task, but Thomas Jefferson University researchers have managed to come very close.

Reporting in the Proceedings of the National Academy of Sciences, a team of Jefferson immunologists found that a specialized “human immune system” mouse model closely mimics a person’s specific response and resolution of a tick-borne infection known as relapsing fever, caused by the bacteria Borrelia hermsii.

The response is so strikingly similar that it gives good reason for researchers to apply the strategy to a host of other infections to better understand how the immune system attempts to fights them— which could ultimately lead to precise treatment and prevention strategies.

“This is first time an interaction of an infectious agent with a host, the progression of the disease and its eventual resolution recapitulates what you would see in a human being,” said Kishore R. Alugupalli, Ph.D., Assistant Professor of Microbiology and Immunology at Thomas Jefferson University and the Kimmel Cancer Center at Jefferson. “Our model is not only a susceptible model, but it actually tells us how the human immune system is functionally working. That is the big difference from the previous studies.”

What really surprised the team is that the mouse physiological environment was able to facilitate the development of human B1-like cells, which is specialized type of antibody producing systems used to fight infection due to a variety of bacterial pathogens, including Pneumococcus and Salmonella.

In the study, researchers transferred hematopoietic stem cells from human umbilical cord blood into mice lacking their own immune system. This resulted in development of a human immune system in these mice. These “human immune system” (HIS) mice were then infected to gauge response.

According to the authors, an analysis of spleens and lymph nodes revealed that the mice developed a population of B1b-like cells that may have fought off the infection. Researchers also observed that reduction of those B cells resulted in recurrent episodes of bacteremia, the hallmark of relapsing fever.

“The B1b cells in humans had been speculated, but never confirmed,” said co-author Timothy L. Manser, Ph.D., Professor and Chair of the Department of Microbiology and Immunology at Jefferson. “We found that in mice, the B1b cell subset is critically important for resolution of this type of bacterial infection.”

“This would indicate that there is a functional equivalent of the subset in humans that has not been previously recognized,” he added.

The mouse model with relapsing fever recapitulates many of the clinical manifestations of the disease and has previously revealed that T cell-independent antibody responses are required to resolve the bacteria episodes. However, it was not clear whether such protective humoral responses are mounted in humans.

“It’s an amazing platform that could be used to really study how the human B1 cells could work against a variety of bacterial and viral infections,” said Dr. Alugupalli.

Steve Graff | Newswise Science News
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>