Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Mirror Human Response to Bacterial Infection and Resolution in Mice

16.12.2011
Imitating human diseases using an animal model is a difficult task, but Thomas Jefferson University researchers have managed to come very close.

Reporting in the Proceedings of the National Academy of Sciences, a team of Jefferson immunologists found that a specialized “human immune system” mouse model closely mimics a person’s specific response and resolution of a tick-borne infection known as relapsing fever, caused by the bacteria Borrelia hermsii.

The response is so strikingly similar that it gives good reason for researchers to apply the strategy to a host of other infections to better understand how the immune system attempts to fights them— which could ultimately lead to precise treatment and prevention strategies.

“This is first time an interaction of an infectious agent with a host, the progression of the disease and its eventual resolution recapitulates what you would see in a human being,” said Kishore R. Alugupalli, Ph.D., Assistant Professor of Microbiology and Immunology at Thomas Jefferson University and the Kimmel Cancer Center at Jefferson. “Our model is not only a susceptible model, but it actually tells us how the human immune system is functionally working. That is the big difference from the previous studies.”

What really surprised the team is that the mouse physiological environment was able to facilitate the development of human B1-like cells, which is specialized type of antibody producing systems used to fight infection due to a variety of bacterial pathogens, including Pneumococcus and Salmonella.

In the study, researchers transferred hematopoietic stem cells from human umbilical cord blood into mice lacking their own immune system. This resulted in development of a human immune system in these mice. These “human immune system” (HIS) mice were then infected to gauge response.

According to the authors, an analysis of spleens and lymph nodes revealed that the mice developed a population of B1b-like cells that may have fought off the infection. Researchers also observed that reduction of those B cells resulted in recurrent episodes of bacteremia, the hallmark of relapsing fever.

“The B1b cells in humans had been speculated, but never confirmed,” said co-author Timothy L. Manser, Ph.D., Professor and Chair of the Department of Microbiology and Immunology at Jefferson. “We found that in mice, the B1b cell subset is critically important for resolution of this type of bacterial infection.”

“This would indicate that there is a functional equivalent of the subset in humans that has not been previously recognized,” he added.

The mouse model with relapsing fever recapitulates many of the clinical manifestations of the disease and has previously revealed that T cell-independent antibody responses are required to resolve the bacteria episodes. However, it was not clear whether such protective humoral responses are mounted in humans.

“It’s an amazing platform that could be used to really study how the human B1 cells could work against a variety of bacterial and viral infections,” said Dr. Alugupalli.

Steve Graff | Newswise Science News
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>