Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Mirror Human Response to Bacterial Infection and Resolution in Mice

16.12.2011
Imitating human diseases using an animal model is a difficult task, but Thomas Jefferson University researchers have managed to come very close.

Reporting in the Proceedings of the National Academy of Sciences, a team of Jefferson immunologists found that a specialized “human immune system” mouse model closely mimics a person’s specific response and resolution of a tick-borne infection known as relapsing fever, caused by the bacteria Borrelia hermsii.

The response is so strikingly similar that it gives good reason for researchers to apply the strategy to a host of other infections to better understand how the immune system attempts to fights them— which could ultimately lead to precise treatment and prevention strategies.

“This is first time an interaction of an infectious agent with a host, the progression of the disease and its eventual resolution recapitulates what you would see in a human being,” said Kishore R. Alugupalli, Ph.D., Assistant Professor of Microbiology and Immunology at Thomas Jefferson University and the Kimmel Cancer Center at Jefferson. “Our model is not only a susceptible model, but it actually tells us how the human immune system is functionally working. That is the big difference from the previous studies.”

What really surprised the team is that the mouse physiological environment was able to facilitate the development of human B1-like cells, which is specialized type of antibody producing systems used to fight infection due to a variety of bacterial pathogens, including Pneumococcus and Salmonella.

In the study, researchers transferred hematopoietic stem cells from human umbilical cord blood into mice lacking their own immune system. This resulted in development of a human immune system in these mice. These “human immune system” (HIS) mice were then infected to gauge response.

According to the authors, an analysis of spleens and lymph nodes revealed that the mice developed a population of B1b-like cells that may have fought off the infection. Researchers also observed that reduction of those B cells resulted in recurrent episodes of bacteremia, the hallmark of relapsing fever.

“The B1b cells in humans had been speculated, but never confirmed,” said co-author Timothy L. Manser, Ph.D., Professor and Chair of the Department of Microbiology and Immunology at Jefferson. “We found that in mice, the B1b cell subset is critically important for resolution of this type of bacterial infection.”

“This would indicate that there is a functional equivalent of the subset in humans that has not been previously recognized,” he added.

The mouse model with relapsing fever recapitulates many of the clinical manifestations of the disease and has previously revealed that T cell-independent antibody responses are required to resolve the bacteria episodes. However, it was not clear whether such protective humoral responses are mounted in humans.

“It’s an amazing platform that could be used to really study how the human B1 cells could work against a variety of bacterial and viral infections,” said Dr. Alugupalli.

Steve Graff | Newswise Science News
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>