Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers master gene editing technique in mosquito that transmits deadly diseases

27.03.2015

Traditionally, to understand how a gene functions, a scientist would breed an organism that lacks that gene - "knocking it out" - then ask how the organism has changed. Are its senses affected? Its behavior? Can it even survive?

Thanks to the recent advance of gene editing technology, this gold standard genetic experiment has become much more accessible in a wide variety of organisms. Now, researchers at Rockefeller University have harnessed a technique known as CRISPR-Cas9 editing in an important and understudied species: the mosquito, Aedes aegypti, which infects hundreds of millions of people annually with the deadly diseases chikungunya, yellow fever, and dengue fever.


Mosquito larvae from two different lines fluoresce in different colors thanks to genetic tags that were inserted using the CRISPR-Cas9 gene editing system.

Credit: Vosshall Laboratory

Researchers led by postdoctoral fellow Benjamin J. Matthews adapted the CRISPR-Cas9 system to Ae. aegypti and were able to efficiently generate targeted mutations and insertions in a number of genes. The immediate goal of this project, says Matthews, is to learn more about how different genes help the species operate so efficiently as a disease vector, and create new ways to control it.

"To understand how the female mosquito actually transmits disease," says Matthews, "you have to learn how she finds humans to bite, and how she chooses a source of water to lay her eggs. Once you have that information, techniques for intervention will come."

In the study, published March 26 in Cell Reports, Matthews and research assistant Kathryn E. Kistler, both in Leslie B. Vosshall's Laboratory of Neurogenetics and Behavior, adapted the CRISPR-Cas9 system to introduce precise mutations in Ae. aegypti. Previously, to create these types of mutations, scientists relied on techniques that used engineered proteins to bind to specific segments of DNA they wanted to remove, a process that was both expensive and unreliable.

CRISPR-Cas9, in contrast, consists of short stretches of RNA that bind to specific regions of the genome where a protein, Cas9, cleaves the DNA. Scientists have been studying how RNA binds to DNA for decades and "the targeting is done with rules that we have a good handle on," says Matthews, which makes it easy to reprogram CRISPR-Cas9 to target any gene.

"This amazing technique has worked in nearly every organism that's been tried," says Vosshall, who is Robin Chemers Neustein Professor and a Howard Hughes Medical Institute investigator. "There are lots of interesting animal species out there that could not be studied using genetics prior to CRISPR-Cas9, and as a result this technique is already revolutionizing biology."

This work opens the door to learning more about the role of specific genes the Vosshall lab suspects may help mosquitoes propagate, perhaps by finding the perfect spot to lay their eggs. Their protocols will likely also help other scientists apply the same technique to study additional organisms, such as agricultural pests or mosquitoes that carry malaria.

"Before starting this project, we thought it would be difficult to modify many genes in the mosquito genome in a lab setting" Matthews says. "With a little tweaking, we were able to make this technique routine and it's only going to get easier, faster, and cheaper from here on out."

Zach Veilleux | EurekAlert!

Further reports about: DNA RNA Rockefeller Vosshall aegypti bind deadly diseases genes master gene mosquito mutations organism species technique techniques

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>