Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers map the epic evolution of a 'ring species'

26.05.2014

The Greenish Warbler, long considered an idealized example of a single species that diverged into two as it expanded its range, has a much more checkered family history than biologists previously realized.

Ring species are a continuous loop of related populations, each adapted to its local environment, with two terminal populations in the loop meeting but now unable to mate. But an in-depth genomic analysis published today in Nature by University of British Columbia researchers reveals that the Greenish Warbler's genetic migration through central Asia involved periods of geographic separation and hybridization.


This image shows a West Siberian greenish warbler (P. t. viridanus).

Credit: Darren Irwin, University of British Columbia.


Greenish warblers were thought to have evolved from a single ancestral population that gradually diverged into two new species as it expanded northwards around the Tibetan plateau (grey arrows). Cutting-edge genomic approaches now show that at least two ancestral populations generated the current ring distribution (black arrows). The two populations met in northern India, where they extensively interbreed (bi-directional black arrows), and in central Siberia, where interbreeding is rare. Circles indicate 'dead ends' for gene flow.

Credit: Miguel Alcaide, University of British Columbia.

"We've shown that the evolution of ring species is much more complex than the smooth and continuous divergence envisioned by the classic model," says UBC zoologist Miguel Alcaide, the paper's lead author.

"If you view the ring of Greenish Warbler subspecies as a river, over the years the flow of populations has experienced periods of isolation--as if forming ponds during a draught--which accelerated genetic differences. This would have been interspersed with periods of flooding, or rapid exchange between populations. Interbreeding after range expansion has been, however, much more restricted among neighboring populations exhibiting substantial differences in morphology and behavior."

Originally expanding out of southern Asia, subspecies of greenish warbler have diverged around the expanse of the Tibetan plateau over thousands of years, with two distantly related populations meeting again in the north, in central Siberia.

Since early observations in the 1930s, biologists have thought the terminal sub-species incapable of mating. The new analysis shows that small regions of the western Siberian genome can be found in some of the eastern Siberian birds, indicating some successful hybridization between those forms.

"Given the new genomic evidence for historical breaks in gene flow, it's remarkable that traits such as plumage and song show such gradual change around the ring," says UBC researcher Darren Irwin, senior author on the paper and an expert who has studied greenish warblers since the 1990s.

"And despite the small amount of hybridization between the most distantly related forms in central Siberia, they remain highly distinct in songs, plumage and genomic patterns."

"Overall, despite the complex patterns of gene flow, the Greenish Warbler still has the central characteristics of a ring species: two mostly distinct populations connected by a chain of populations in which traits and genes change progressively from one species to the other," says Irwin.

Miguel Alcaide | Eurek Alert!
Further information:
http://www.ubc.ca/

Further reports about: Greenish Warbler Siberian Warbler genomic hybridization plumage populations species subspecies

More articles from Life Sciences:

nachricht Stick insects produce bacterial enzymes themselves
31.05.2016 | Max-Planck-Institut für chemische Ökologie

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attosecond camera for nanostructures

Physicists of the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität Munich in collaboration with scientists from the Friedrich-Alexander-Universität Erlangen-Nürnberg have observed a light-matter phenomenon in nano-optics, which lasts only attoseconds.

The interaction between light and matter is of key importance in nature, the most prominent example being photosynthesis. Light-matter interactions have also...

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Better combustion for power generation

31.05.2016 | Power and Electrical Engineering

Stick insects produce bacterial enzymes themselves

31.05.2016 | Life Sciences

In a New Method for Searching Image Databases, a Hand-drawn Sketch Is all it Takes

31.05.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>