Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers map the epic evolution of a 'ring species'

26.05.2014

The Greenish Warbler, long considered an idealized example of a single species that diverged into two as it expanded its range, has a much more checkered family history than biologists previously realized.

Ring species are a continuous loop of related populations, each adapted to its local environment, with two terminal populations in the loop meeting but now unable to mate. But an in-depth genomic analysis published today in Nature by University of British Columbia researchers reveals that the Greenish Warbler's genetic migration through central Asia involved periods of geographic separation and hybridization.


This image shows a West Siberian greenish warbler (P. t. viridanus).

Credit: Darren Irwin, University of British Columbia.


Greenish warblers were thought to have evolved from a single ancestral population that gradually diverged into two new species as it expanded northwards around the Tibetan plateau (grey arrows). Cutting-edge genomic approaches now show that at least two ancestral populations generated the current ring distribution (black arrows). The two populations met in northern India, where they extensively interbreed (bi-directional black arrows), and in central Siberia, where interbreeding is rare. Circles indicate 'dead ends' for gene flow.

Credit: Miguel Alcaide, University of British Columbia.

"We've shown that the evolution of ring species is much more complex than the smooth and continuous divergence envisioned by the classic model," says UBC zoologist Miguel Alcaide, the paper's lead author.

"If you view the ring of Greenish Warbler subspecies as a river, over the years the flow of populations has experienced periods of isolation--as if forming ponds during a draught--which accelerated genetic differences. This would have been interspersed with periods of flooding, or rapid exchange between populations. Interbreeding after range expansion has been, however, much more restricted among neighboring populations exhibiting substantial differences in morphology and behavior."

Originally expanding out of southern Asia, subspecies of greenish warbler have diverged around the expanse of the Tibetan plateau over thousands of years, with two distantly related populations meeting again in the north, in central Siberia.

Since early observations in the 1930s, biologists have thought the terminal sub-species incapable of mating. The new analysis shows that small regions of the western Siberian genome can be found in some of the eastern Siberian birds, indicating some successful hybridization between those forms.

"Given the new genomic evidence for historical breaks in gene flow, it's remarkable that traits such as plumage and song show such gradual change around the ring," says UBC researcher Darren Irwin, senior author on the paper and an expert who has studied greenish warblers since the 1990s.

"And despite the small amount of hybridization between the most distantly related forms in central Siberia, they remain highly distinct in songs, plumage and genomic patterns."

"Overall, despite the complex patterns of gene flow, the Greenish Warbler still has the central characteristics of a ring species: two mostly distinct populations connected by a chain of populations in which traits and genes change progressively from one species to the other," says Irwin.

Miguel Alcaide | Eurek Alert!
Further information:
http://www.ubc.ca/

Further reports about: Greenish Warbler Siberian Warbler genomic hybridization plumage populations species subspecies

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>