Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers make older beta cells act young again

By manipulating a well-known molecular pathway, JDRF-funded scientists breathe new life into aging beta cells

As a person ages, the ability of their beta cells to divide and make new beta cells declines. By the time children reach the age of 10 to 12 years, the ability of their insulin-producing cells to replicate greatly diminishes.

If these cells, called beta cells, are destroyed¡Xas they are in type 1 diabetes¡Xtreatment with the hormone insulin becomes essential to regulate blood glucose levels and get energy from food. Now, longtime JDRF-funded researchers at Stanford University have identified a pathway responsible for this age-related decline, and have shown that they can tweak it to get older beta cells to act young again¡Xand start dividing.

The work, to appear in the October12 issue of Nature, provides the most complete picture to date of the molecular and biochemical mechanisms that bring beta cell regeneration to a near halt as beta cells age. These findings may help pave a path for developing strategies to restore beta cell number to treat both type 1 and type 2 diabetes.

In their work, the researchers, led by Seung Kim, M.D., Ph.D., of Stanford University, found that a protein called PDGF, or platelet derived growth factor, and its receptor send beta cells signals to start dividing via an intricate pathway that controls the levels of two proteins in the beta cell nucleus, where cell division occurs. Working with young mice, Dr. Kim and his team found that PDGF binds to its receptor on the beta cell's surface and controls the level of these regulating proteins allowing cells to divide. However, in older mice, they discovered that beta cells lose PDGF receptors, and that this age-related change prevents beta cells from dividing. Dr. Kim and his colleagues further found that by artificially increasing the number of PDGF receptors, they can restore the ability of the beta cell to divide and generate new cells.

The researchers also show that this age-dependent beta cell proliferation pathway is also present in human beta cells. Similar to the findings with mice beta cells, the researchers found that juvenile human islet beta cells proliferate in response to PDGF, but adult human islet beta cells do not due to a reduced level of PDGF receptors.

In the past, researchers have used other techniques to trigger older beta cells to start dividing, but they have been met with challenging results, explains Dr. Kim, who is also a Howard Hughes Medical Institute investigator. "You can get these cells to grow but they will literally lose their specific identity as a beta cell," he says. "They will either stop making insulin, or they'll grow just fine but they will grow uncontrollably or into other cell types."

But with the advent of better genetic tools and the completion of the human genome project, that era has come to pass, he explains. "With these advanced technologies, we are now able to get a comprehensive view¡Xat the genetic level¡Xof the changes beta cells undergo as they age, and we can track these changes and study them in a systematic way," he adds. "By understanding what genes are turned on and off in a young beta cell, we can try to recreate that genetic environment in older beta cells such that they divide in a desirable, controlled manner."

By better understanding the mechanisms that control and govern pancreatic ƒÒ-cell proliferation, researchers could transform treatments for diabetes. The cascade leading from PDGF binding to its receptor on the beta cell's surface to changes in protein levels within the nucleus could inspire scientists with new ideas on how to discover new drugs to safely promote beta cell regeneration to replace those lost in diabetes.

"A major goal of JDRF's regeneration program is to find ways to preserve and restore functional beta cells as a cure for type 1 diabetes. One of the challenges is that adult beta cells do not readily replicate, and these new findings provide key insight on how the body regulates beta cell growth and replication," says Patricia Kilian, Ph.D., JDRF's scientific program director of regeneration research. "Based on these key scientific insights, we hope the new findings will help enable the discovery of safe therapies to promote beta cell regeneration."

About JDRF

JDRF is the worldwide leader for research to cure type 1 diabetes (T1D). It sets the global agenda for diabetes research, and is the largest charitable funder and advocate of diabetes science worldwide.

The mission of JDRF is to find a cure for diabetes and its complications through the support of research. T1D is an autoimmune disease that strikes children and adults suddenly, and can be fatal. Until a cure is found, people with T1D have to test their blood sugar and give themselves insulin injections multiple times or use a pump--each day, every day of their lives. And even with that intensive care, insulin is not a cure for diabetes, nor does it prevent its potential complications, which may include kidney failure, blindness, heart disease, stroke, and amputation.

Since its founding in 1970 by parents of children with T1D, JDRF has awarded more than $1.5 billion to diabetes research, including $107 million last year. More than 80 percent of JDRF's expenditures directly support research and research-related education. For more information, please visit

Joana Casas | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>