Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers make older beta cells act young again

13.10.2011
By manipulating a well-known molecular pathway, JDRF-funded scientists breathe new life into aging beta cells

As a person ages, the ability of their beta cells to divide and make new beta cells declines. By the time children reach the age of 10 to 12 years, the ability of their insulin-producing cells to replicate greatly diminishes.

If these cells, called beta cells, are destroyed¡Xas they are in type 1 diabetes¡Xtreatment with the hormone insulin becomes essential to regulate blood glucose levels and get energy from food. Now, longtime JDRF-funded researchers at Stanford University have identified a pathway responsible for this age-related decline, and have shown that they can tweak it to get older beta cells to act young again¡Xand start dividing.

The work, to appear in the October12 issue of Nature, provides the most complete picture to date of the molecular and biochemical mechanisms that bring beta cell regeneration to a near halt as beta cells age. These findings may help pave a path for developing strategies to restore beta cell number to treat both type 1 and type 2 diabetes.

In their work, the researchers, led by Seung Kim, M.D., Ph.D., of Stanford University, found that a protein called PDGF, or platelet derived growth factor, and its receptor send beta cells signals to start dividing via an intricate pathway that controls the levels of two proteins in the beta cell nucleus, where cell division occurs. Working with young mice, Dr. Kim and his team found that PDGF binds to its receptor on the beta cell's surface and controls the level of these regulating proteins allowing cells to divide. However, in older mice, they discovered that beta cells lose PDGF receptors, and that this age-related change prevents beta cells from dividing. Dr. Kim and his colleagues further found that by artificially increasing the number of PDGF receptors, they can restore the ability of the beta cell to divide and generate new cells.

The researchers also show that this age-dependent beta cell proliferation pathway is also present in human beta cells. Similar to the findings with mice beta cells, the researchers found that juvenile human islet beta cells proliferate in response to PDGF, but adult human islet beta cells do not due to a reduced level of PDGF receptors.

In the past, researchers have used other techniques to trigger older beta cells to start dividing, but they have been met with challenging results, explains Dr. Kim, who is also a Howard Hughes Medical Institute investigator. "You can get these cells to grow but they will literally lose their specific identity as a beta cell," he says. "They will either stop making insulin, or they'll grow just fine but they will grow uncontrollably or into other cell types."

But with the advent of better genetic tools and the completion of the human genome project, that era has come to pass, he explains. "With these advanced technologies, we are now able to get a comprehensive view¡Xat the genetic level¡Xof the changes beta cells undergo as they age, and we can track these changes and study them in a systematic way," he adds. "By understanding what genes are turned on and off in a young beta cell, we can try to recreate that genetic environment in older beta cells such that they divide in a desirable, controlled manner."

By better understanding the mechanisms that control and govern pancreatic ƒÒ-cell proliferation, researchers could transform treatments for diabetes. The cascade leading from PDGF binding to its receptor on the beta cell's surface to changes in protein levels within the nucleus could inspire scientists with new ideas on how to discover new drugs to safely promote beta cell regeneration to replace those lost in diabetes.

"A major goal of JDRF's regeneration program is to find ways to preserve and restore functional beta cells as a cure for type 1 diabetes. One of the challenges is that adult beta cells do not readily replicate, and these new findings provide key insight on how the body regulates beta cell growth and replication," says Patricia Kilian, Ph.D., JDRF's scientific program director of regeneration research. "Based on these key scientific insights, we hope the new findings will help enable the discovery of safe therapies to promote beta cell regeneration."

About JDRF

JDRF is the worldwide leader for research to cure type 1 diabetes (T1D). It sets the global agenda for diabetes research, and is the largest charitable funder and advocate of diabetes science worldwide.

The mission of JDRF is to find a cure for diabetes and its complications through the support of research. T1D is an autoimmune disease that strikes children and adults suddenly, and can be fatal. Until a cure is found, people with T1D have to test their blood sugar and give themselves insulin injections multiple times or use a pump--each day, every day of their lives. And even with that intensive care, insulin is not a cure for diabetes, nor does it prevent its potential complications, which may include kidney failure, blindness, heart disease, stroke, and amputation.

Since its founding in 1970 by parents of children with T1D, JDRF has awarded more than $1.5 billion to diabetes research, including $107 million last year. More than 80 percent of JDRF's expenditures directly support research and research-related education. For more information, please visit www.jdrf.org.

Joana Casas | EurekAlert!
Further information:
http://www.jdrf.org

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>