Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers make older beta cells act young again

13.10.2011
By manipulating a well-known molecular pathway, JDRF-funded scientists breathe new life into aging beta cells

As a person ages, the ability of their beta cells to divide and make new beta cells declines. By the time children reach the age of 10 to 12 years, the ability of their insulin-producing cells to replicate greatly diminishes.

If these cells, called beta cells, are destroyed¡Xas they are in type 1 diabetes¡Xtreatment with the hormone insulin becomes essential to regulate blood glucose levels and get energy from food. Now, longtime JDRF-funded researchers at Stanford University have identified a pathway responsible for this age-related decline, and have shown that they can tweak it to get older beta cells to act young again¡Xand start dividing.

The work, to appear in the October12 issue of Nature, provides the most complete picture to date of the molecular and biochemical mechanisms that bring beta cell regeneration to a near halt as beta cells age. These findings may help pave a path for developing strategies to restore beta cell number to treat both type 1 and type 2 diabetes.

In their work, the researchers, led by Seung Kim, M.D., Ph.D., of Stanford University, found that a protein called PDGF, or platelet derived growth factor, and its receptor send beta cells signals to start dividing via an intricate pathway that controls the levels of two proteins in the beta cell nucleus, where cell division occurs. Working with young mice, Dr. Kim and his team found that PDGF binds to its receptor on the beta cell's surface and controls the level of these regulating proteins allowing cells to divide. However, in older mice, they discovered that beta cells lose PDGF receptors, and that this age-related change prevents beta cells from dividing. Dr. Kim and his colleagues further found that by artificially increasing the number of PDGF receptors, they can restore the ability of the beta cell to divide and generate new cells.

The researchers also show that this age-dependent beta cell proliferation pathway is also present in human beta cells. Similar to the findings with mice beta cells, the researchers found that juvenile human islet beta cells proliferate in response to PDGF, but adult human islet beta cells do not due to a reduced level of PDGF receptors.

In the past, researchers have used other techniques to trigger older beta cells to start dividing, but they have been met with challenging results, explains Dr. Kim, who is also a Howard Hughes Medical Institute investigator. "You can get these cells to grow but they will literally lose their specific identity as a beta cell," he says. "They will either stop making insulin, or they'll grow just fine but they will grow uncontrollably or into other cell types."

But with the advent of better genetic tools and the completion of the human genome project, that era has come to pass, he explains. "With these advanced technologies, we are now able to get a comprehensive view¡Xat the genetic level¡Xof the changes beta cells undergo as they age, and we can track these changes and study them in a systematic way," he adds. "By understanding what genes are turned on and off in a young beta cell, we can try to recreate that genetic environment in older beta cells such that they divide in a desirable, controlled manner."

By better understanding the mechanisms that control and govern pancreatic ƒÒ-cell proliferation, researchers could transform treatments for diabetes. The cascade leading from PDGF binding to its receptor on the beta cell's surface to changes in protein levels within the nucleus could inspire scientists with new ideas on how to discover new drugs to safely promote beta cell regeneration to replace those lost in diabetes.

"A major goal of JDRF's regeneration program is to find ways to preserve and restore functional beta cells as a cure for type 1 diabetes. One of the challenges is that adult beta cells do not readily replicate, and these new findings provide key insight on how the body regulates beta cell growth and replication," says Patricia Kilian, Ph.D., JDRF's scientific program director of regeneration research. "Based on these key scientific insights, we hope the new findings will help enable the discovery of safe therapies to promote beta cell regeneration."

About JDRF

JDRF is the worldwide leader for research to cure type 1 diabetes (T1D). It sets the global agenda for diabetes research, and is the largest charitable funder and advocate of diabetes science worldwide.

The mission of JDRF is to find a cure for diabetes and its complications through the support of research. T1D is an autoimmune disease that strikes children and adults suddenly, and can be fatal. Until a cure is found, people with T1D have to test their blood sugar and give themselves insulin injections multiple times or use a pump--each day, every day of their lives. And even with that intensive care, insulin is not a cure for diabetes, nor does it prevent its potential complications, which may include kidney failure, blindness, heart disease, stroke, and amputation.

Since its founding in 1970 by parents of children with T1D, JDRF has awarded more than $1.5 billion to diabetes research, including $107 million last year. More than 80 percent of JDRF's expenditures directly support research and research-related education. For more information, please visit www.jdrf.org.

Joana Casas | EurekAlert!
Further information:
http://www.jdrf.org

More articles from Life Sciences:

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Researchers reveal new details on aged brain, Alzheimer's and dementia
21.11.2017 | Allen Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020

21.11.2017 | Physics and Astronomy

Borophene shines alone as 2-D plasmonic material

21.11.2017 | Materials Sciences

Penn study identifies new malaria parasites in wild bonobos

21.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>