Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Link Protein to Tumor Growth

03.09.2010
Johns Hopkins researchers working on mice have discovered a protein that is a major target of a gene that, when mutated in humans, causes tumors to develop on nerves associated with hearing, as well as cataracts in the eyes.

The protein, named YAP, is linked to the NF2 tumor suppressor gene via a relay of chemical signals that is responsible for shaping and sizing tissue growth by coordinating control of cell proliferation and death, according to research published July 19 in Developmental Cell.

The study provides strong evidence that YAP someday could serve as a therapeutic target for those afflicted by the ringing ears, hearing loss and cataracts that characterize neurofibromatosis type 2, which develops when the NF2 gene malfunctions, according to Duojia Pan, Ph.D., a professor of molecular biology and genetics at the Johns Hopkins University School of Medicine and an investigator of the Howard Hughes Medical Institute.

Pan’s lab has long been exploring the signaling pathway known as Hippo, a collective of biochemically linked proteins that functions like a chain reaction in everything from flies and mice to humans in order to keep organs appropriately sized by relaying a “stop growing” message.

It was in 2003 that Pan’s team identified the gene they named Hippo when they saw that an abnormal copy of it led to an unusually large eye in a developing fruit fly. Two years later, they established that Hippo sits in the middle of a succession of signals working together to limit the expression of genes that otherwise promote cell division and cell survival. In 2007, they showed that by genetically manipulating the hippo pathway in a mouse liver, the organ grew to five times its normal size and became cancerous.

The new experiments not only reveal the mechanism of a disease gene — recent studies estimate that the incidence of neurofibromatosis type 2 may be as high as 1 in 25,000 people — but also move researchers closer to putting their hands on Hippo’s trigger, where Pan thinks “the key to organ size control lies.”

The team discovered the YAP-NF2 link by studying mice that had been genetically altered so that their livers were missing the NF2 protein.

“We found out that mutatating NF2 in mouse liver leads to tumor formation,” Pan says. “The liver lacking NF2 was profoundly enlarged by tumors, the same as those in which we previously had perturbed the Hippo pathway.”

The hypothesis was that NF2, via the Hippo pathway, suppresses YAP, Pan explains: If removing NF2 resulted in too much YAP, which caused liver tumors, then getting rid of YAP should correct the problem.

To test this, the team genetically altered those mice whose livers were missing the NF2 protein by breeding them to mice that enabled the silencing of the YAP gene. Some of the progeny had no NF2 and no YAP. As a byproduct, the same breeding also produced some progeny that had no NF2 and 50 percent of YAP activity.

“We found we could correct the problem by shutting down YAP,” Pan said, “and more than that, we were surprised to discover that even just tamping down the YAP activity by 50 percent resulted in largely normal-looking liver tissue.”

The team showed that when they decreased the YAP protein by 50 percent in the liver of a normal mouse (with no NF2 mutation), no abnormal consequences resulted. However, when they did the same in the context of having removed NF2, the happy consequence was that the liver was appropriately sized and tumor free.

“The exquisite sensitivity of the NF2-deficient tumors to YAP was striking,” Pan says. “This is very powerful, positive data, which we discovered by accident during the process of breeding the mutant mice.”

“This matter of sensitivity makes YAP an important potential therapeutic target,” Pan says. “The level of YAP is very critical for NF2-related tumor development. If someone made a drug to target this protein, it only has to be potent enough to weaken its activity by 50 percent to see a consequence.”

Authors from the Johns Hopkins University School of Medicine, in addition to Pan, are Nailing Zhang, Haibo Bai, Karen K. David, Jixin Dong, Yonggang Zheng, Jing Cai and Robert A. Anders. Other authors are Marco Giovannini, House Ear Institute, and Pentao Liu, The Wellcome Trust Sanger Institute.

Funding was provided by the National Institute of Diabetes and Digestive and Kidney Diseases, Department of Defense and Howard Hughes Medical Institute.

On the Web:
http://humangenetics.jhmi.edu/index.php/faculty/duojia-pan.html
http://www.cell.com/developmental-cell

Maryalice Yakutchik | Newswise Science News
Further information:
http://www.jhmi.edu

Further reports about: HIPPO Hippo pathway Medical Wellness Medicine Nf2 Protein Yap mouse liver

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>