Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers looking at light-induced toxins in air and water

The air we breathe and water we drink may be more harmful than we realize according to Carlos Crespo's research team

Is the air we breathe on a daily basis slowly killing us?

It may not be that severe, but the air we breathe and water we drink may be more harmful than we realize.

Toxic nitro-aromatic pollutants (or nitro-polycyclic aromatic hydrocarbons), both manmade and naturally occurring, continue to be emitted into the air and are present in food, water systems, soils and sediments, says Carlos Crespo, the Case Western Reserve University chemistry assistant professor whose research team is studying how ultraviolet-visible light interacts with and transforms these compounds under controlled laboratory settings.

The goal of his group is to assess the physical and chemical consequences of sunlight absorption by these pollutants in the environment. In particular, the Crespo research group wants to know the relaxation pathways used by these pollutants to redistribute the excess electronic energy gained when they absorb light and how this energy is used to transform these compounds into other harmful compounds or products. Their work is being funded by a $100,000 grant from the American Chemical Society Petroleum Research Fund.

"Degradation by sunlight is thought to be the main route of natural removal of nitro-aromatic compounds from the environment. Consequently, understanding how the absorption of light transforms these compounds holds the key for predicting their environmental fate and for designing effective pollution control strategies," says Crespo.

He added, "These relatively small compounds are formed primarily through incomplete combustion processes, like municipal incinerators, motor vehicles and power plants."

While these compounds do occur naturally in the environment, through actions like volcanic eruptions or forest fires, the use of fossil fuels increases the amount emitted into the atmosphere, increasing exposure to their harmful effects.

"Epidemiological studies show that exposure to diesel exhaust and urban air pollution is associated with an increased risk of lung cancer," Crespo says, noting that laboratory mammals and in vitro tests have found the compounds to be toxic, mutagenic and even carcinogenic.

Previous research works have shown that light-induced degradation of a number of nitro-aromatic compounds leads to products that are more toxic than their parent compounds. Further evidence suggests that these pollutants contribute as much as 10% of the total mutagenicity of inhalable, suspended particles in polluted areas. However, the specific pathways through which these compounds are transformed into products by sunlight are not well understood.

The Crespo group expects that by using sophisticated laser techniques with less than a trillionth of a second time resolution, in combination with computations based on quantum mechanical theories, a better understanding of the fundamental processes controlling the light-induced transformation of these pollutants can be obtained.

"Once we understand the physico-chemical factors that control the degradation of these compounds by light absorption at the molecular level, we might be able to use this knowledge to reduce some of these chemical transformations."

It is known that these compounds can release a nitric oxide (NO) radical when exposed to light. Crespo says one of the long-term goals of this research is to harness the power of these radical compounds for biological applications.

"Once we understand the factors that control the release of NO radicals, we could envision the use nitro-aromatic compounds as light-triggered, time- and site-controlled NO radical donors for therapeutic applications," he says. "But we are currently a long way from that."

Their 2008 paper, "Environmental Photochemistry of Nitro-PAHs: Direct Observation of Ultrafast Intersystem Crossing in 1-Nitropyrene," was one of the first scholarly works using femtosecond laser techniques (1 femtosecond = 1 „e 10-15 seconds) to investigate the electronic energy relaxation pathways of these environmental pollutants. However it is an area that is gaining more interest.

"There have been several additional articles since, including one our group submitted this past December," Crespo says. "Research in this subject is getting competitive, but positive competition is great for science. "

His group is also focused in studying the light-induced ultrafast relaxation pathways in other relevant bio-organic compounds.

Jason A. Tirotta | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>