Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers looking at light-induced toxins in air and water

18.02.2009
The air we breathe and water we drink may be more harmful than we realize according to Carlos Crespo's research team

Is the air we breathe on a daily basis slowly killing us?

It may not be that severe, but the air we breathe and water we drink may be more harmful than we realize.

Toxic nitro-aromatic pollutants (or nitro-polycyclic aromatic hydrocarbons), both manmade and naturally occurring, continue to be emitted into the air and are present in food, water systems, soils and sediments, says Carlos Crespo, the Case Western Reserve University chemistry assistant professor whose research team is studying how ultraviolet-visible light interacts with and transforms these compounds under controlled laboratory settings.

The goal of his group is to assess the physical and chemical consequences of sunlight absorption by these pollutants in the environment. In particular, the Crespo research group wants to know the relaxation pathways used by these pollutants to redistribute the excess electronic energy gained when they absorb light and how this energy is used to transform these compounds into other harmful compounds or products. Their work is being funded by a $100,000 grant from the American Chemical Society Petroleum Research Fund.

"Degradation by sunlight is thought to be the main route of natural removal of nitro-aromatic compounds from the environment. Consequently, understanding how the absorption of light transforms these compounds holds the key for predicting their environmental fate and for designing effective pollution control strategies," says Crespo.

He added, "These relatively small compounds are formed primarily through incomplete combustion processes, like municipal incinerators, motor vehicles and power plants."

While these compounds do occur naturally in the environment, through actions like volcanic eruptions or forest fires, the use of fossil fuels increases the amount emitted into the atmosphere, increasing exposure to their harmful effects.

"Epidemiological studies show that exposure to diesel exhaust and urban air pollution is associated with an increased risk of lung cancer," Crespo says, noting that laboratory mammals and in vitro tests have found the compounds to be toxic, mutagenic and even carcinogenic.

Previous research works have shown that light-induced degradation of a number of nitro-aromatic compounds leads to products that are more toxic than their parent compounds. Further evidence suggests that these pollutants contribute as much as 10% of the total mutagenicity of inhalable, suspended particles in polluted areas. However, the specific pathways through which these compounds are transformed into products by sunlight are not well understood.

The Crespo group expects that by using sophisticated laser techniques with less than a trillionth of a second time resolution, in combination with computations based on quantum mechanical theories, a better understanding of the fundamental processes controlling the light-induced transformation of these pollutants can be obtained.

"Once we understand the physico-chemical factors that control the degradation of these compounds by light absorption at the molecular level, we might be able to use this knowledge to reduce some of these chemical transformations."

It is known that these compounds can release a nitric oxide (NO) radical when exposed to light. Crespo says one of the long-term goals of this research is to harness the power of these radical compounds for biological applications.

"Once we understand the factors that control the release of NO radicals, we could envision the use nitro-aromatic compounds as light-triggered, time- and site-controlled NO radical donors for therapeutic applications," he says. "But we are currently a long way from that."

Their 2008 paper, "Environmental Photochemistry of Nitro-PAHs: Direct Observation of Ultrafast Intersystem Crossing in 1-Nitropyrene," was one of the first scholarly works using femtosecond laser techniques (1 femtosecond = 1 „e 10-15 seconds) to investigate the electronic energy relaxation pathways of these environmental pollutants. However it is an area that is gaining more interest.

"There have been several additional articles since, including one our group submitted this past December," Crespo says. "Research in this subject is getting competitive, but positive competition is great for science. "

His group is also focused in studying the light-induced ultrafast relaxation pathways in other relevant bio-organic compounds.

Jason A. Tirotta | EurekAlert!
Further information:
http://www.case.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>