Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers kick-start ancient DNA

23.11.2010
Binghamton University researchers recently revived ancient bacteria trapped for thousands of years in water droplets embedded in salt crystals.

For decades, geologists have looked at these water droplets — called fluid inclusions — and wondered whether microbes could be extracted from them. Fluid inclusions have been found inside salt crystals ranging in age from thousands to hundreds of millions years old.

But there has always been a question about whether the organisms cultured from salt crystals are genuinely ancient material or whether they are modern-day contaminants, said Tim Lowenstein, professor of geological sciences and environmental studies at Binghamton.

Lowenstein and Binghamton colleague J. Koji Lum, professor of anthropology and of biological sciences, believe they have resolved this doubt. And they've received $400,000 from the National Science Foundation to support further research on the topic.

Lowenstein's team, which has been pursuing this problem for years, began by examining the fluid inclusions under a microscope. "Not only did we find bacteria, we found several types of algae as well," he said. "The algae actually may be the food on which the bacteria survive for tens of thousands of years."

When Lum got involved, the researchers began to wonder about the DNA of the organisms they were finding.

"You have a little trapped ecosystem," Lum said. "Some of these guys are feeding on other ones trapped in this space. The things that aren't alive in there, their DNA is still preserved."

Lum's graduate student Krithivas Sankaranarayanan reviewed existing literature on ancient DNA and helped to develop a protocol for use with Lowenstein's samples.

"We have these samples going back from the present to over 100,000 years in one exact location," Lum said. "So Tim can look at the salinity and reconstruct ancient climates. Now we're looking at the DNA from bacteria, the algae, the fungi and what was living in those waters and how those things changed over time. We have a view of all the different organisms that were in the lakes at the time these inclusions were formed."

The researchers sequence the DNA and culture the bacteria they find. Then it's time to think big. Lum's most optimistic view of the project goes like this: "It's possible that we can observe organisms evolving and see how they're reacting to climate change over geologic time."

The samples Lowenstein works with are drawn from Death Valley and Saline Valley in California as well as from sites in Michigan, Kansas and Italy.

Temperatures at these locations may have reached 130 degrees Fahrenheit in the past, and the pockets of water trapped inside the rocks are generally very salty.

The environment may sound harsh — in fact, it's among the most extreme on Earth — but the creatures that survive there are tough.

"These are some of the hardiest beasts on the planet," Lum said. And the conditions inside these water droplets are ideally suited to preserving DNA.

"They're like time capsules," Lowenstein agreed.

For more Binghamton University research news, see http://discovere.binghamton.edu/

Gail Glover | EurekAlert!
Further information:
http://www.binghamton.edu

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>