Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at IRB Barcelona discover a general mechanism that accelerates tumor development

25.02.2013
ICREA professor Raul Mendez publishes a study in Nature describing how the CPBE1 protein 'takes the brakes off' the production of proteins associated with the cell switch from being healthy to tumorous

Cancer is characterized by uncontrolled cell division and growth. In order to identify new therapeutic targets through which to tackle the disease, scientists seek to clarify the mechanisms that control the expression of genes that favor the development of tumors, in processes such as uncontrolled cell division. Today, Nature has published a paper by the lab headed by Raúl Méndez, ICREA professor at the Institute for Research in Biomedicine (IRB Barcelona).


Green shows the localization of CPEB1 in four tumor cells and blue the nuclei.

Credit: © Bava, Méndez, IRB Barcelona

The study describes a mechanism controlled by the CPEB1 protein that affects more than 200 genes related to cell proliferation and tumor progression. The mechanism, which was discovered using Hodgkin lymphoma cells, has been proposed as a general regulatory system that enhances the spread of cancer.

The researchers describe that CPEB1 shortens a highly specific region of RNAs (RNAs are the molecules that carry gene information for protein synthesis). This region holds most of the signals that determine whether an RNA molecule is made into a protein or not. "CPEB1 "takes off the brakes" for hundreds of RNAs that stimulate cell desdifferentiation and proliferation, allowing them to be made into proteins; however, in addition to removing the brakes in the nucleus, this protein accompanies RNA to the cytoplasm, where it speeds up the production of these proteins", explains the senior author of the paper Raúl Méndez, head of the "Translational control of cell cycle and differentiation" group at IRB Barcelona.

Raúl Méndez is an expert on the CPBE protein family, a type of RNA-binding protein that has a positive and crucial role in early embryo development. "CPEB proteins are necessary during development and also during tissue regeneration via stem cells in adults, but if the programme governed by CPEBs is continually switched on, cells divide when they are not supposed to and form a tumor", explains Méndez. The CPEB family comprises four proteins, which compensate each other's normal function but which have specific activities in diseased states. "This finding is positive from a therapeutic viewpoint because it means that if you remove CPEB1 from healthy cells, its function can be taken over by any other CPEB protein. In contrast, in tumors only CPEB1 has the capacity to shorten these regions, thus affecting only tumor cells", states Italian researcher Felice Alessio Bava, first author of the paper, and post-doctoral fellow with Méndez's group who, this year, has obtained his doctorate degree through the "la Caixa" International Fellowship Programme. This study provides further evidence of the potential of CPEB proteins as therapeutic targets. In 2011, in a study published in Nature Medicine, Méndez identified that CPEB4 "switches on" hundreds of genes linked to tumor growth. This new study explains that the overexpression of CPEB4 in tumors is because CPEB1 has also "released the brakes that keep CPEB4 at low levels in a healthy tissue". "The fact that these proteins control each other is also advantageous from a therapeutic point of view", asserts Méndez, "because partial inhibition, by a drug, would be amplified, thus allowing tumor cell reprogramming. The amplification should make it easier to find a viable compound".

The lab has developed a system to screen therapeutic molecules for a drug that can inhibit the action of CPEB in tumors while having few secondary effects on healthy cells. "There is no drug currently available that influences the regulation of gene expression at this level. Our findings open up a pioneering therapeutic window. We are optimistic about the potential of CPEB proteins as targets", says Méndez.

The action of CPEB proteins should be considered in the design of other therapeutic strategies

The study published in Nature includes a meticulous genomic analysis of RNA molecules that are processed in different ways depending on whether CPBE1 is present. The study provides a list of between 200 and 300 of such genes, that is to say, those that would have the region holding regulatory signals removed. This is precisely the region where microRNAs —small molecules regulating the translation of this RNA to protein— bind. "Many antitumor therapies attempt to interfere with microRNA binding, but we have now revealed that CPEB proteins remove these regions beforehand. The pharmaceutical companies that are developing anti- microRNA compounds will be able to predict whether their targets are suitable approaches or not", explains the scientist.

The study has involved the collaboration of the group led by Juan Valcárcel at the Center for Genomic Regulation (CRG), an expert in RNA nuclear processing, and that of Roderic Guigó, an expert in biostatistics and also at CRG. This study received funding from the Consolider RNAreg consortium of the Spanish Ministry of Economy and Competition and the Generalitat de Catalunya (Government of Catalonia).

Reference article:

CPEB1 coordinates alternative 3'UTR formation with translational regulation

Felice-Alessio Bava, Carolina Eliscovich, Pedro G. Ferreira, Belen Miñana, Claudia Ben-Dov, Roderic Guigó, Juan Valcárcel and Raúl Méndez Nature (2013) doi: 10.1038/nature11901

Sònia Armengou | EurekAlert!
Further information:
http://www.irbbarcelona.org

Further reports about: B protein CPBE1 CPEB1 CPEB4 IRB Nature Immunology RNA RNA molecule cell division therapeutic targets

More articles from Life Sciences:

nachricht Subcutaneous Administration of Multispecific Antibody Makes Tumor Treatment Faster & More Tolerable
01.07.2015 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Why human egg cells don't age well
01.07.2015 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Offshore wind park Westermost Rough officially inaugurated

01.07.2015 | Press release

Siemens Velaro train wins "Red Dot" award

01.07.2015 | Awards Funding

Liquids on Fibers - Slipping or Flowing?

01.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>