Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Induce A New Transmissible Prion Disease

Researchers at the Baltimore Veterans Affairs (VA) Medical Center and the University of Maryland School of Medicine have conducted a study on prion disease and found that transmissible spongiform encephalopathy (TSE) can be induced without an outside catalyst like a virus.

TSE (also known as prion diseases) are a group of progressive conditions affecting the brain and nervous systems of many animals and humans. The conditions include Creutzfeldt-Jakob disease (the human form of mad cow disease), Gerstmann-Sträussler-Scheinker syndrome, fatal familial insomnia and kuru, all forming a spectrum of overlapping signs and symptoms caused by a myriad of tiny holes in the cortex that give it the appearance of a sponge. The disease impairs brain functions leading to both mental and physical deterioration over time.

Using a synthetic prion protein made in E. coli, the researchers induced a new form of TSE. Their study findings—published in January 2010 issue of Acta Neuropathol (with open access at— indicate a slow progression of the disease after the observance of first clinical signs, which is typical of how the disease unfolds in both humans and large animals, than in smaller animals such as rodents.

One of the study’s lead researchers, Robert Rohwer, PhD, director of Molecular Neurovirology Laboratory at the VA Maryland Health Care System and an associate professor at the University of Maryland School of Medicine, says the result is an “important milestone in establishing that the native wild-type prion protein is sufficient to induce prion disease in normal wild-type hosts. The interpretation of previous transmissions with synthetic prion proteins has been confounded by the use of mutant proteins and mutant host recipients subject to spontaneous disease.”

This result, Rohwer said, does not explain the many discrepancies “that have supported skeptics of the prion hypothesis like myself, and there is enormous work yet to be done to reconcile these apparent inconsistencies. However, the new insights, tools and focus provided by these discoveries promise to greatly accelerate the pace of those efforts.” Rohwer noted that the disease being induced “was itself unique and fascinating” and may prove valuable as a window on its progression in humans, cattle and sheep.

Rohwer, together with Ilia Backakov, PhD, an associate professor at the School of Medicine and director of the Prion Insitute at the University of Maryland’s Biotechnolgical Institute, inoculated Golden Syrian hamsters with synthetic E.coli recombinant prion proteins, while at the same time inoculating other hamsters with comprehensive slightly altered controls. During this first passage, all but two of the hamsters survived to old age (18 months) without any sign of disease. The researchers investigated the brains of each hamster at 18 months old for evidence of the TSE infection, finding that one animal showed definite signs of infection and one suspicious. They homogenized the brains of both the possibly infected and apparently uninfected animals that had been inoculated with prion protein and some control group hamsters, and then inoculated the homogenates in new animals. Again the animals appeared normal for more than a year after the inoculation, but then the animals began developing symptoms of TSE disease.

“There had been infection in the first passage, but the disease progression was so slow it didn’t have time to advance to a symptomatic form within the hamster’s lifespan,” said Rohwer.

In the hamsters from the second passage, a higher concentration of infectivity meant the infection process started at a higher level, causing the animals to reach a symptomatic stage of disease before their life’s end.

The research resulted in two findings, one being the ability of synthetic wild-type prion protein to induce prion disease in normal wild-type hosts and the other being the development of a new strain of hamster prion disease with a unique presentation for rodents that may prove valuable for investigating the longer duration TSE illnesses of larger animals like humans and cattle.

The VA Maryland Health Care System (VAMHCS) provides a broad spectrum of medical, surgical, rehabilitative, mental health and outpatient care to veterans at two medical centers, one community living & rehabilitation center and five outpatient clinics located throughout the state. More than 52,000 veterans from various generations receive care from the VAHMCS annually. Nationally recognized for its state-of-the-art technology and quality patient care, the VAHMCS is proud of its reputation as a leader in veterans’ health care, research and education. It costs nothing for Veterans to enroll for health care with the VA Maryland Health Care System and it could be one of the more important things a Veteran can do. For information about VA health care eligibility and enrollment or how to apply for a VA medical care hardship to avoid future copayments for VA health care, interested Veterans are urged to call the Enrollment Center for the VA Maryland Health Care System, Monday through Friday, from 8 a.m. to 4:30 p.m. at 1-800-463-6295, ext. 7324 or visit

Rosalia Scalia | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>