Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers IdentifyKey Molecular Components Linking Circadian Rhythms and Cell Division Cycles

15.01.2014
Researchers at the University of Cincinnati (UC) have identified key molecular components linking circadian rhythms and cell division cycles in Neurospora crassa, providing insights that could lead to improved disease treatments and drug delivery.

The researchers in the UC College of Medicine Department of Molecular and Cellular Physiology, led by Christian Hong, PhD, published their findings Monday, Jan. 13, online ahead of print in PNAS (Proceedings of the National Academy of Sciences).

"Our work has large implications for the general understanding of the connection between the cell cycle and the circadian clock,” says Hong, an assistant professor in the molecular and cellular physiology department who collaborated with an international team of researchers on the project.

Funding for Hong’s research was provided by a four-year, $3.7 million grant from the Defense Advanced Research Projects Agency (DARPA), an agency of the U.S. Department of Defense. He also received startup funds from UC’s molecular and cellular physiology department.

The circadian rhythm, often referred to as the biological clock, is a cycle of biological activity based on a 24-hour period and generated by an internal clock synchronized to light-dark cycles and other external cues.

"Everything has a schedule, and we are interested in understanding these schedules at a molecular level,” Hong says. "We also wanted to know the components that connect two different oscillators (the circadian clock and cell division, or mitosis).”

Using the filamentous (thread-like) fungi Neurospora crassa, the researchers investigated the coupling between the cell cycle and the circadian clock using mathematical modeling and experimentally validated model-driven predictions. They demonstrated a mechanism that is conserved (constant) in Neurospora as in mammals, which results in circadian clock-gated mitotic cycles.

"The cell divisions happened during a certain time of day,” Hong says, "and they were molecularly regulated by the mechanisms of circadian rhythms.”

The researchers showed that a conserved coupling between the circadian clock and the cell cycle exists via serine/threonine protein kinase-29 (STK-29), the Neurospora homolog (possessing similar DNA sequence) of mammalian WEE1 kinase.

Additionally, the researchers conducted phase-shift experiments in which they transferred Neurospora to constant darkness, then administered a 90-minute pulse of white fluorescent light at indicated time points in order to induce phase-shift.

"We were able to show that when we phase-shift the circadian clock, we also observe phase-shifting of the cell cycle components,” Hong says.

By building on experimentally validated mathematical models from Neurospora, researchers will be able to make predictions in other Neurospora strains and mammalian cells.

As Hong puts it, "This discovery will serve as a stepping stone for further investigations to uncover conserved principles of coupled mechanisms between the cell cycle and circadian rhythms.”

Keith Herrell | EurekAlert!
Further information:
http://www.uc.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>