Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify How Yersinia Spreads Within Infected Organs

18.09.2013
Extension of technique improves the study of bacteria in organs

Researchers at Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts have identified how one type of bacteria, Yersinia, immobilizes the immune system in order to grow in the organs of mice.

To do so, the researchers extended the use of a technique and suggest that it could be used to study other bacteria that use the same or similar means of infection. The study is published in the September 11 issue of Cell Host & Microbe.

Led by microbiologist Joan Mecsas, the research team studied a specific member of a family of effector proteins known as Yops. Like other effector proteins, Yops alter the immune system to make it possible for bacteria such as Yersinia to spread in infected organs and from organ to organ. The research team studied the Yop known as YopH in order to identify its specific effect within infected spleens.

Many bacteria inject proteins into cells in organs as a part of their infection process. The technique they used, called the TEM-1 reporter system, uses an enzyme and a dye to color-code cells. This enables researchers to see which of the many cells in an organ have been injected. The current study used the TEM system to identify injected cells but then, in an interesting first, gathered these cells from infected organs to study them further.

After isolating the color-coded cells from infected organs, the researchers determined how immune cells are made inactive by effector proteins, such as YopH and other Yops, by comparing cells with and without the specific effector protein. The research team used tissue samples from two sets of mice with Yersinia pseudotuberculosis: those with and without functional YopH proteins. They separated tissue cells from immune cells taken from spleens and compared suspended immune cells from the two sets of mice.

The researchers determined that YopH deactivates multiple proteins and blocks calcium flows vital to normal immune cell communication. Decreased immune cell communication allows Yersinia to continue spreading in infected organs without an effective response from the immune system.

“Being able to pull out and study cells from infected tissues that contain bacterial proteins enabled us to see the effects of YopH in tissues infected with Yersinia pseudotuberculosis. Our application of this technique may also work in bacteria similar to Yersinia, to understand how other bacteria cause damage in organ systems,” said senior author Joan Mecsas, Ph.D., an associate professor of molecular biology and microbiology at Tufts University School of Medicine and member of the immunology and molecular microbiology programs at the Sackler School of Graduate Biomedical Sciences at Tufts.

“We know that two forms of food poisoning and some forms of pneumonias caused by E. coli, Salmonella, and Pseudomonas respectively, as well as other types of infections depend on the same system as Yersinia to infect humans and animals. There are also several bacteria that use related means to infect people and animals. This includes the bacteria that cause Legionnaires’ disease, ulcers, cholera, various foodborne illnesses, pneumonias and even general infections such as some ear and sinus infections. This technique could be applied to understand these other bacteria,” said co-first author Enrique Durand, Ph.D., a graduate of the molecular microbiology program at the Sackler School, now teaching biology in the International Baccalaureate (honors) program at Snowden International School at Copley in the Boston Public Schools system.

“Yersinia and bacteria with systems of infection like Yersinia can have drastic effects on organs, including inflammation that leads to appendicitis-like pain. Seeing the effect of the bacteria on specific cell types within organs, such as the spleen, has been challenging because cells grown in petri dishes cannot mimic the holistic environment of a mammalian system,” said co-first author Hortensia Rolan, Ph.D., a postdoctoral scholar in the Mecsas lab.

Researchers have studied Yersinia since the discovery of the most well-known member of the Yersinia genus, Yersinia pestis, which causes bubonic plague (and which was found in squirrels in a national forest in Los Angeles County this summer). But Yersinia pseudotuberculosis, its near relative, is a standard Yersinia bacterium to study in labs.

Yersinia pseudotuberculosis, which is not related to tuberculosis, is a type of zoonotic bacteria, or one that can be transferred from an animal to a person. Infections in humans are rare and, like bubonic plague, it can be treated with antibiotics.

Research reported in this publication was supported by the National Institute of Allergies and Infectious Diseases of the National Institutes of Health under award numbers T32AI007329, T32AI007422, and R01AI056068.

Rolan, H.G., Durand, E.A., Mecsas, J. (September 11, 2013). Identifying Yersinia YopH-targeted signal transduction pathways that impair neutrophil responses during in vivo murine infection. Cell Host & Microbe (14:3, pp. 306-317). DOI: 10.1016/j.chom.2013.08.013

About Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences

Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts University are international leaders in innovative medical education and advanced research. The School of Medicine and the Sackler School are renowned for excellence in education in general medicine, biomedical sciences, special combined degree programs in business, health management, public health, bioengineering and international relations, as well as basic and clinical research at the cellular and molecular level. Ranked among the top in the nation, the School of Medicine is affiliated with six major teaching hospitals and more than 30 health care facilities. Tufts University School of Medicine and the Sackler School undertake research that is consistently rated among the highest in the nation for its effect on the advancement of medical science.

If you are a member of the media interested in learning more about this topic, or speaking with a faculty member at Tufts University School of Medicine or another Tufts health sciences researcher, please contact Siobhan Gallagher at 617-636-6586.

Siobhan E. Gallagher | Newswise
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>