Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify How Yersinia Spreads Within Infected Organs

18.09.2013
Extension of technique improves the study of bacteria in organs

Researchers at Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts have identified how one type of bacteria, Yersinia, immobilizes the immune system in order to grow in the organs of mice.

To do so, the researchers extended the use of a technique and suggest that it could be used to study other bacteria that use the same or similar means of infection. The study is published in the September 11 issue of Cell Host & Microbe.

Led by microbiologist Joan Mecsas, the research team studied a specific member of a family of effector proteins known as Yops. Like other effector proteins, Yops alter the immune system to make it possible for bacteria such as Yersinia to spread in infected organs and from organ to organ. The research team studied the Yop known as YopH in order to identify its specific effect within infected spleens.

Many bacteria inject proteins into cells in organs as a part of their infection process. The technique they used, called the TEM-1 reporter system, uses an enzyme and a dye to color-code cells. This enables researchers to see which of the many cells in an organ have been injected. The current study used the TEM system to identify injected cells but then, in an interesting first, gathered these cells from infected organs to study them further.

After isolating the color-coded cells from infected organs, the researchers determined how immune cells are made inactive by effector proteins, such as YopH and other Yops, by comparing cells with and without the specific effector protein. The research team used tissue samples from two sets of mice with Yersinia pseudotuberculosis: those with and without functional YopH proteins. They separated tissue cells from immune cells taken from spleens and compared suspended immune cells from the two sets of mice.

The researchers determined that YopH deactivates multiple proteins and blocks calcium flows vital to normal immune cell communication. Decreased immune cell communication allows Yersinia to continue spreading in infected organs without an effective response from the immune system.

“Being able to pull out and study cells from infected tissues that contain bacterial proteins enabled us to see the effects of YopH in tissues infected with Yersinia pseudotuberculosis. Our application of this technique may also work in bacteria similar to Yersinia, to understand how other bacteria cause damage in organ systems,” said senior author Joan Mecsas, Ph.D., an associate professor of molecular biology and microbiology at Tufts University School of Medicine and member of the immunology and molecular microbiology programs at the Sackler School of Graduate Biomedical Sciences at Tufts.

“We know that two forms of food poisoning and some forms of pneumonias caused by E. coli, Salmonella, and Pseudomonas respectively, as well as other types of infections depend on the same system as Yersinia to infect humans and animals. There are also several bacteria that use related means to infect people and animals. This includes the bacteria that cause Legionnaires’ disease, ulcers, cholera, various foodborne illnesses, pneumonias and even general infections such as some ear and sinus infections. This technique could be applied to understand these other bacteria,” said co-first author Enrique Durand, Ph.D., a graduate of the molecular microbiology program at the Sackler School, now teaching biology in the International Baccalaureate (honors) program at Snowden International School at Copley in the Boston Public Schools system.

“Yersinia and bacteria with systems of infection like Yersinia can have drastic effects on organs, including inflammation that leads to appendicitis-like pain. Seeing the effect of the bacteria on specific cell types within organs, such as the spleen, has been challenging because cells grown in petri dishes cannot mimic the holistic environment of a mammalian system,” said co-first author Hortensia Rolan, Ph.D., a postdoctoral scholar in the Mecsas lab.

Researchers have studied Yersinia since the discovery of the most well-known member of the Yersinia genus, Yersinia pestis, which causes bubonic plague (and which was found in squirrels in a national forest in Los Angeles County this summer). But Yersinia pseudotuberculosis, its near relative, is a standard Yersinia bacterium to study in labs.

Yersinia pseudotuberculosis, which is not related to tuberculosis, is a type of zoonotic bacteria, or one that can be transferred from an animal to a person. Infections in humans are rare and, like bubonic plague, it can be treated with antibiotics.

Research reported in this publication was supported by the National Institute of Allergies and Infectious Diseases of the National Institutes of Health under award numbers T32AI007329, T32AI007422, and R01AI056068.

Rolan, H.G., Durand, E.A., Mecsas, J. (September 11, 2013). Identifying Yersinia YopH-targeted signal transduction pathways that impair neutrophil responses during in vivo murine infection. Cell Host & Microbe (14:3, pp. 306-317). DOI: 10.1016/j.chom.2013.08.013

About Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences

Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts University are international leaders in innovative medical education and advanced research. The School of Medicine and the Sackler School are renowned for excellence in education in general medicine, biomedical sciences, special combined degree programs in business, health management, public health, bioengineering and international relations, as well as basic and clinical research at the cellular and molecular level. Ranked among the top in the nation, the School of Medicine is affiliated with six major teaching hospitals and more than 30 health care facilities. Tufts University School of Medicine and the Sackler School undertake research that is consistently rated among the highest in the nation for its effect on the advancement of medical science.

If you are a member of the media interested in learning more about this topic, or speaking with a faculty member at Tufts University School of Medicine or another Tufts health sciences researcher, please contact Siobhan Gallagher at 617-636-6586.

Siobhan E. Gallagher | Newswise
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>