Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify variations in 4 genes associated with an increased risk of colorectal cancer

21.02.2013
An international research team co-led by cancer prevention researcher Ulrike "Riki" Peters, Ph.D., M.P.H., and biostatistician Hsu Li, Ph.D., at Fred Hutchinson Cancer Research Center has identified variations in four genes that are linked to an increased risk of colorectal cancer. Peters and colleagues from 40 institutes throughout the world published their findings online ahead of the April print issue of Gastroenterology.
Peters and colleagues for the past four years have been studying the genes linked to colorectal cancer through the Genetics and Epidemiology of Colorectal Cancer Consortium, a collaboration involving researchers from North America, Australia and Europe who have pooled data from approximately 40,000 study participants, about half of whom have colorectal cancer. Fred Hutch houses GECCO's coordinating center and Peters is its principal investigator.

The genomewide-association study was conducted in two phases. The first involved rapidly scanning complete sets of blood DNA from 12,696 people with colorectal cancer or a precancerous condition called adenoma. This data was then compared to the same set of variants from 15,113 healthy controls of European descent.

Of 2.7 million genetic variants identified, the 10 most statistically significant mutations associated with colorectal cancer were then further analyzed in a follow-up genomewide-association study of 3,056 colorectal cancers or adenomas and colon-tissue samples from 6,658 healthy controls of European and Asian descent.

The research team uncovered mutations in the following genes – all genetic variants that previously had not been associated with colorectal cancer:
NABP – a gene involved in DNA repair
LAMC1 – the second gene in the laminin gene family found to be associated with colorectal cancer
CCND2 – a gene involved in cell-cycle control, which is a key control mechanism to prevent cancer development

TBX3 – a gene transcription factor that targets a known colorectal cancer pathway


If a person carries one or two copies of any of these genetic variants, their risk of colorectal cancer is increased by 10 percent to 40 percent compared to a person who does not harbor such DNA genetic variants, Peters said.

"These findings could potentially lead to new drug targets and, in combination with previously identified genetic and environmental risk factors, identify subgroups of the population that can benefit most from colorectal-cancer screening and could be targeted for early or more frequent endoscopy, a very effective screening tool for colorectal cancer," said Peters, a member of the Public Health Sciences Division at Fred Hutch.

GECCO is funded by the National Cancer Institute, the National Institutes of Health and the U.S. Department of Health and Human Services.

At Fred Hutchinson Cancer Research Center, home to three Nobel laureates, interdisciplinary teams of world-renowned scientists seek new and innovative ways to prevent, diagnose and treat cancer, HIV/AIDS and other life-threatening diseases. Fred Hutch's pioneering work in bone marrow transplantation led to the development of immunotherapy, which harnesses the power of the immune system to treat cancer with minimal side effects. An independent, nonprofit research institute based in Seattle, Fred Hutch houses the nation's first and largest cancer prevention research program, as well as the clinical coordinating center of the Women's Health Initiative and the international headquarters of the HIV Vaccine Trials Network. Private contributions are essential for enabling Fred Hutch scientists to explore novel research opportunities that lead to important medical breakthroughs. For more information visit www.fhcrc.org or follow Fred Hutch on Facebook, Twitter or YouTube.

Kristen Woodward | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>