Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify tests to diagnose invasive aspergillosis with 100 percent accuracy

14.08.2014

Early, more accurate detection of this potentially deadly fungus can improve patient outcomes, according to new report in The Journal of Molecular Diagnostics

The fungal infection invasive aspergillosis (IA) can be life threatening, especially in patients whose immune systems are weakened by chemotherapy or immunosuppressive drugs. Despite the critical need for early detection, IA remains difficult to diagnose.

A study in The Journal of Molecular Diagnostics compared three diagnostic tests and found that the combination of nucleic acid sequence-based amplification (NASBA) and real-time quantitative PCR (qPCR) detects aspergillosis with 100% accuracy.

IA is caused by the fungus Aspergillus fumigatus, which is considered by many pathologists to be the world's most harmful mold. "Traditional diagnostic methods, such as culture and histopathology of infected tissues, often fail to detect Aspergillus," comments lead investigator Yun Xia, PhD, of the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

In this retrospective study, scientists evaluated the diagnostic performance of two nucleic acid amplification assays (qPCR and NASBA) and one antigen detection method (galactomannan enzyme-linked immunosorbent assay [GM-ELISA]) using blood samples collected from 80 patients at high risk of IA. Of the 80 patients, 42.5% had proven or probable IA. The patients came from intensive care, hematology, neurology, nephrology, geriatrics, and other hospital departments.

The tests were evaluated singly and in combination. Individually, NASBA had the highest sensitivity (76.47%) whereas qPCR offered the highest specificity (89.13%). NASBA also was the test that best indicated that a patient did not have the infection (negative predictive value). NASBA and qPCR each had a high Youden index, a measure of the effectiveness of a diagnostic marker.

Combining the tests improved the outcomes. The combination of NASBA and qPCR led to 100% specificity and 100% positive predictive value (the probability that subjects truly have the infection).

"Because each test has advantages and disadvantages, a combination of different tests may be able to provide better diagnostic value than is provided by a single test," says Dr. Xia. The combination of NASBA and qPCR should be useful in excluding IA in suspect cases, thus reducing both suffering and expense for immunocompromised patients. On the other hand, the combination of NASBA and qPCR could be more suitable for screening patients suspected of infection, because this assay had the highest sensitivity."

The authors note that NASBA offers the advantages of rapid amplification (90 minutes) and simple operation with low instrument cost compared with qPCR and GM-ELISA. They caution that although GM-ELISA is widely and routinely used for aspergillosis diagnosis, this study indicates that it had low sensitivity (52.94%) with reasonable specificity (80.43%), making it "inferior to both NASBA and qPCR."

The A. fumigatus mold is ubiquitous in the environment and is found on decaying plant matter. For healthy individuals exposure to the fungus can be inconsequential, but it can cause significant morbidity and mortality for those with compromised immune systems, including patients who have undergone organ transplants or have advanced AIDS. Even patients with more modest immune impairments, such as diabetes, poor nutrition, steroid use, or lung disease, can become severely infected. Symptoms may include fever, cough, difficulty breathing, chest pain, seizures, and focal neurological problems.

The criteria for high risk for IA included high (1,3)-β-D-glucan levels (>60 pg/mL), immunocompromised status, and one of six conditions (recipient of an allogeneic stem cell transplant, hematological disease, severe immunodeficiency, prolonged use of corticosteroids, fever or chest infiltrate unresponsive to routine antibiotics, or radiological indication of fungal disease). Patients did not receive any antifungal therapy until after blood samples were collected.

The first test was the measurement of GM, a polysaccharide component of the fungal cell wall, which can be released into serum and bronchoalveolar lavage fluid during infection. GM was measured using a commercially available ELISA kit (Platelia Aspergillus; Bio-Rad Laboratories, Hercules, CA). In this study, a GM index (GMI) of 0.5 was used.

The second test was an Aspergillus DNA extraction and real-time qPCR assay. The DNA was extracted from plasma using a QIAamp blood mini kit (Qiagen, Hilden, Germany). The purified DNA was then amplified by an Aspergillus genus-specific qPCR assay using SYBR Green chemistry and primers targeting the 28S rRNA gene. The lower limit of detection was empirically determined to be 10 colony-forming units of Aspergillus conidia per reaction.

The third test was an Aspergillus RNA extraction and NASBA assay. Total RNA was extracted from plasma using a blood/liquid sample total RNA rapid extraction kit (BioTeke, Beijing, China). A highly conserved 18S rRNA region specific for the Aspergillus genus was chosen as the detection target. It was then amplified using a pair of primers. Blank control, negative control (RNA extracted from patients without Aspergillus infection) and positive control (RNA extracted from Aspergillus in pure culture) were included in each run.

Eileen Leahy | Eurek Alert!
Further information:
http://www.elsevier.com

Further reports about: Aspergillus DNA Health RNA accuracy amplification combination culture extraction fungal immune invasive

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>