Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Identify New Source of Powerful Immunity Protein

Researchers at UT Southwestern Medical Center report the identification of a new cellular source for an important disease-fighting protein used in the body’s earliest response to infection.

The protein interferon-gamma (IFN-ã) keeps viruses from replicating and stimulates the immune system to produce other disease-fighting agents. Neutrophils, the newly identified cellular source of the protein, are the major component of the pus that forms around injured tissue.

The researchers also report that the neutrophils appear to produce IFN-ã through a new cellular pathway independent of Toll-like receptors (TLRs): the body’s early warning system for invasion by pathogens. This finding indicates that mammals might possess a second early-alert system – the sort of built-in redundancy engineers would envy, said Dr. Felix Yarovinsky, assistant professor of immunology and senior author of the study published online in the Proceedings of the National Academy of Sciences in June.

“We believe our mouse study provides strong evidence that neutrophils, white blood cells created in the bone marrow, produce significant amounts of IFN-ã in response to disease,” Dr. Yarovinsky said. “The finding of a new and essential cellular source for IFN-ã challenges a long-held belief in the field and is significant because neutrophils are the most common kind of white blood cell.”

Two pathogens were used in this study: the parasite Toxoplasma gondii – which can cause brain damage in humans and other mammals that have compromised immune systems – and a type of bacterium that causes gastroenteritis, Salmonella typhimurium.

Innate immunity is the body’s first line of defense against pathogens, including those that it has never before encountered. Adaptive immunity is the secondary system that battles pathogens to which the body has previously been exposed and to which it has developed antibodies.

Textbooks list natural killer (NK) cells and T cells as the body’s significant sources of IFN-ã. Although large numbers of neutrophils have long been observed to congregate at the site of a new infection, they were commonly thought to be first responders or foot soldiers rather than generals in the battle against disease, as this study indicates they are, Dr. Yarovinsky explained.

About 20 years ago, there were clinical reports in humans and animals suggesting that neutrophils might produce IFN-ã, but the idea was largely ignored by the scientific community until the last decade, he said.

Since then, studies at UT Southwestern and elsewhere have found that mice lacking NK and T cells, and therefore expected to be unable to produce IFN-ã, somehow continued to withstand infections better than mice genetically unable to make any IFN-ã. These observations suggested the possibility of an unknown source of the protein, he explained.

In a series of experiments, the UT Southwestern researchers identified neutrophils as the major source of IFN-ã in mice lacking NK and T cells. “Based on what we know about neutrophils, their large numbers and rapid deployment to the site of infection should provide an important means of very early, robust, and rapid elimination of disease-causing agents,” the researchers wrote. Although neutrophil-derived IFN-ã alone is insufficient to achieve complete host protection, the protein significantly extended the survival of mice in this study, Dr. Yarovinsky said.

In related news, the Burroughs Wellcome Fund in June announced that Dr. Yarovinsky had been selected for its 2013 Investigators in the Pathogenesis of Infectious Disease Award to further investigate mechanisms of host defense against various infectious diseases mediated by IFN-ã produced by neutrophils. The award will provide $500,000 over five years to pursue this line of research.

Others involved include first author Carolyn Sturge, a graduate student of immunology; former research assistant Alicia Benson; research assistant II Megan Raetz; graduate student Cara L. Wilhelm; Dr. Julie Mirpuri, assistant professor of pediatrics; and Cancer Immunobiology Center Director Dr. Ellen Vitetta, professor of immunology and of microbiology.

Funding was provided by the National Institutes of Health and the Burroughs Wellcome Foundation.

About UT Southwestern Medical Center
UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution’s faculty includes many distinguished members, including five who have been awarded Nobel Prizes since 1985. Numbering more than 2,700, the faculty is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in 40 specialties to nearly 100,000 hospitalized patients and oversee more than 2.1 million outpatient visits a year.
This news release is available on our home page at

Deborah Wormser | Newswise
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>