Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify New Source of Powerful Immunity Protein

12.07.2013
Researchers at UT Southwestern Medical Center report the identification of a new cellular source for an important disease-fighting protein used in the body’s earliest response to infection.

The protein interferon-gamma (IFN-ã) keeps viruses from replicating and stimulates the immune system to produce other disease-fighting agents. Neutrophils, the newly identified cellular source of the protein, are the major component of the pus that forms around injured tissue.

The researchers also report that the neutrophils appear to produce IFN-ã through a new cellular pathway independent of Toll-like receptors (TLRs): the body’s early warning system for invasion by pathogens. This finding indicates that mammals might possess a second early-alert system – the sort of built-in redundancy engineers would envy, said Dr. Felix Yarovinsky, assistant professor of immunology and senior author of the study published online in the Proceedings of the National Academy of Sciences in June.

“We believe our mouse study provides strong evidence that neutrophils, white blood cells created in the bone marrow, produce significant amounts of IFN-ã in response to disease,” Dr. Yarovinsky said. “The finding of a new and essential cellular source for IFN-ã challenges a long-held belief in the field and is significant because neutrophils are the most common kind of white blood cell.”

Two pathogens were used in this study: the parasite Toxoplasma gondii – which can cause brain damage in humans and other mammals that have compromised immune systems – and a type of bacterium that causes gastroenteritis, Salmonella typhimurium.

Innate immunity is the body’s first line of defense against pathogens, including those that it has never before encountered. Adaptive immunity is the secondary system that battles pathogens to which the body has previously been exposed and to which it has developed antibodies.

Textbooks list natural killer (NK) cells and T cells as the body’s significant sources of IFN-ã. Although large numbers of neutrophils have long been observed to congregate at the site of a new infection, they were commonly thought to be first responders or foot soldiers rather than generals in the battle against disease, as this study indicates they are, Dr. Yarovinsky explained.

About 20 years ago, there were clinical reports in humans and animals suggesting that neutrophils might produce IFN-ã, but the idea was largely ignored by the scientific community until the last decade, he said.

Since then, studies at UT Southwestern and elsewhere have found that mice lacking NK and T cells, and therefore expected to be unable to produce IFN-ã, somehow continued to withstand infections better than mice genetically unable to make any IFN-ã. These observations suggested the possibility of an unknown source of the protein, he explained.

In a series of experiments, the UT Southwestern researchers identified neutrophils as the major source of IFN-ã in mice lacking NK and T cells. “Based on what we know about neutrophils, their large numbers and rapid deployment to the site of infection should provide an important means of very early, robust, and rapid elimination of disease-causing agents,” the researchers wrote. Although neutrophil-derived IFN-ã alone is insufficient to achieve complete host protection, the protein significantly extended the survival of mice in this study, Dr. Yarovinsky said.

In related news, the Burroughs Wellcome Fund in June announced that Dr. Yarovinsky had been selected for its 2013 Investigators in the Pathogenesis of Infectious Disease Award to further investigate mechanisms of host defense against various infectious diseases mediated by IFN-ã produced by neutrophils. The award will provide $500,000 over five years to pursue this line of research.

Others involved include first author Carolyn Sturge, a graduate student of immunology; former research assistant Alicia Benson; research assistant II Megan Raetz; graduate student Cara L. Wilhelm; Dr. Julie Mirpuri, assistant professor of pediatrics; and Cancer Immunobiology Center Director Dr. Ellen Vitetta, professor of immunology and of microbiology.

Funding was provided by the National Institutes of Health and the Burroughs Wellcome Foundation.

About UT Southwestern Medical Center
UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution’s faculty includes many distinguished members, including five who have been awarded Nobel Prizes since 1985. Numbering more than 2,700, the faculty is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in 40 specialties to nearly 100,000 hospitalized patients and oversee more than 2.1 million outpatient visits a year.
This news release is available on our home page at
www.utsouthwestern.edu/home/news/index.html

Deborah Wormser | Newswise
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>