Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify new regulator in allergic diseases

29.03.2012
Researchers have taken a critical step in understanding how allergic reactions occur after identifying a genetic signature for regulation of a key immune hormone, interleukin (IL-13).

Scientists from Cincinnati Children's Hospital Medical Center say the finding opens the potential for new molecular targets to treat allergic disease. They report on March 28 in Mucosal Immunology that a particular microRNA, miR-375, is regulated by IL-13, and in turns regulates how IL-13 induces pro-allergic changes, particularly in epithelial cells in the lung and esophagus.

The data support a role for miR-375 in asthma and in eosinophilic esophagitis (EoE), a severe, often painful food allergy that renders children unable to eat a wide variety of foods. EoE can also cause weight loss, vomiting, heartburn and swallowing difficulties.

"The identification of a microRNA that regulates IL-13-induced changes and inflammatory pathways is a significant advancement for the understanding and future treatment of allergic disease," says Marc E. Rothenberg, MD, senior investigator on the study and director of the Division of Allergy and Immunology and Center for Eosinophilic Disorders at Cincinnati Children's. "MiR-375 is proof of principle that microRNAs are involved in fine-tuning IL-13-mediated responses, which opens up a set of new possibilities for novel therapeutic targets for treatment of allergic disease."

IL-13 induces changes in epithelial gene and protein expression that are important in the onset of many allergic diseases, including EoE. Notably, expression of miR-375 was consistently downregulated after IL-13 stimulated human esophageal squamous and bronchial epithelial cells. Viral overexpression of miR-375 in epithelial cell cultures markedly modified the IL-13-associated immunoinflammatory pathways.

MicroRNAs are short segments of RNA that can regulate whether genetic messengers (mRNAs) are degraded or translated into protein.

In the current study, investigators stimulated esophageal and bronchial human epithelial cells with IL-13 and analyzed for differential microRNA expression. Decreases in miR-375 were observed in the human cells and also in an IL-13 transgenic mouse model. The researchers subsequently assessed miR-375 in patients with EoE, a human allergic disease characterized by IL-13 overproduction, and in healthy individuals.

Interestingly, the researchers found that decreased expression of miR-375 correlates significantly with disease activity, the degree of allergic inflammation and that miR-375 expression normalizes with disease remission. While this suggests miR-375's potential use as a disease activity biomarker for certain allergic diseases, changes in IL-13-mediated inflammatory pathways with viral overexpression of miR-375 in epithelial cell cultures also hint at its therapeutic potential.

Allergic diseases have been on the rise over the past 20 years, with approximately one of every 13 children having food allergies and over 2.5 million children suffering from allergic asthma. Only recently recognized as a distinct condition, the incidence of EoE has also been increasing. Rothenberg and his laboratory team pioneered research showing EoE's reported incidence is estimated to be at least one in 1,000 people. Its hallmark is swelling and inflammation in the esophagus, accompanied by high levels of immune cells called eosinophils.

EoE can affect people of any age, but is more common among young men who have a history of other allergic diseases, such as asthma and eczema. EoE is often first discovered in children with feeding difficulties and failure to thrive, but it is often misunderstood and not well known, delaying proper diagnosis and treatment.

Funding support for the study came from the National Institutes of Health, the Campaign Urging Research for Eosinophilic Disease (CURED), the Food Allergy Initiative (FAI), and the Buckeye Foundation.

About Cincinnati Children's

Cincinnati Children's Hospital Medical Center is one of eight children's hospitals named to the Honor Roll in U.S. News and World Report's 2010-11 Best Children's Hospitals. It is ranked #1 for digestive disorders and highly ranked for its expertise in pulmonology, cancer, neonatology, heart and heart surgery, neurology and neurosurgery, diabetes and endocrinology, orthopedics, kidney disorders and urology. Cincinnati Children's is one of the top two recipients of pediatric research grants from the National Institutes of Health. It is internationally recognized for quality and transformation work by Leapfrog, The Joint Commission, the Institute for Healthcare Improvement, the federal Agency for Healthcare Research and Quality, and by hospitals and health organizations it works with globally. Additional information can be found at www.cincinnatichildrens.org.

Follow Us on Facebook

The Rothenberg Lab https://www.facebook.com/RothenbergEosinophilicLab

The Cincinnati Center for Eosinophilic Disorders https://www.facebook.com/CCEDeos

Cincinnati Children's Hospital Medical Center https://www.facebook.com/cincinnatichildrensfans

Learn More About Our Research the Rothenberg Lab http://www.cincinnatichildrens.org/research/divisions/a/allergy-immunology/labs/rothenberg/default/

Nick Miller | EurekAlert!
Further information:
http://www.cchmc.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>