Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Protein–telomere Interactions That Could be Key in Treating Cancer, Other Diseases

02.09.2009
A team of researchers from The Wistar Institute have shown that a large non-coding RNA in mammals and yeast plays a central role in helping maintain telomeres, the tips of chromosomes that contain important genetic information and help regulate cell division.

Since this RNA also facilitates the formation of DNA at telomeres—a process that can protect aging cells and destabilize tumor cells—manipulating its expression may be useful in treating cancer and other diseases.

The steady shortening of telomeres with each replication in somatic cells is linked to cellular aging, genetic instability, and tumor formation. This is because telomeres eventually “run out” after a certain number of cell divisions, resulting in the loss of vital genetic information from the cell’s chromosome with future divisions. Scientists recently identified telomere-repeat-encoding RNA (TERRA) as an integral component of DNA within the telomeres of multiple species. The Wistar team demonstrated how TERRA mediates and partially stabilizes interactions between telomeric proteins that play essential roles in DNA replication.

“TERRA is a major component in helping protect the genome at a very sensitive place, the telomeres,” said senior author Paul M. Lieberman, Ph.D., a professor in Wistar’s Gene Expression and Regulation Program. “By managing TERRA levels we have the potential to regulate cellular aging and to impair the functioning of cancer cells.”

TERRA associates with telomeric factors, but its precise function and mechanism of localization at telomeres had been largely unknown. In a study published on-line on August 27 in Molecular Cell, the Wistar scientists, led by Lieberman, describe how they discovered the telomere proteins that interact with TERRA and the processes by which they do so. In cell cultures, through RNA affinity purification, a process that isolates a single type of protein from a complex mixture, the team identified telomeric proteins (Shelterin components TRF1 and TRF2, and origin recognition complex subunits ORC1, ORC2, and ORC4) that bound to a TERRA oligonucleotide sequence but not to control oligonucleotides. Using RNA chromatin immunoprecipitation assays (ChIPs), in which specific pieces of RNA are isolated from bound proteins, the team discovered that TERRA is bound by telomeric proteins indicating that TERRA was a component of the Shelterin complex. The findings provide important clues that point to strategies for altering the expression of TERRA as a means to treat cancer and other diseases of aging, Lieberman says.

Study investigators also included Zhong Deng, Ph.D., staff scientist; Julie Norseen, predoctoral trainee; Andreas Wiedmer, research assistant; and Harold Riethman, Ph.D., associate professor.

This work was funded by grants from the National Institutes of Health, a Leukemia Lymphoma Society Special Fellow Award, and a University of Pennsylvania Training Grant in Tumor Virology.

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the country, Wistar has long held the prestigious Cancer Center designation from the National Cancer Institute. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. The Wistar Institute: Today’s Discoveries – Tomorrow’s Cures.

| Newswise Science News
Further information:
http://www.wistar.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>