Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify potential therapeutic target in osteosarcoma

02.03.2009
M. D. Anderson findings suggest a key role for interleukin-11 receptor alpha

A receptor known to be active in bone metastases, but previously unexplored in primary bone tumors, is a potential therapeutic target in osteosarcoma, investigators from The University of Texas M. D. Anderson Cancer Center report in the March 1 issue of Cancer Research.

The researchers found that the protein - interleukin-11 receptor alpha (IL-11Ra) - is highly expressed in primary osteosarcoma and in lung metastases from these tumors. Their research suggests the possibility of delivering therapeutic agents directly to osteosarcoma cells by targeting the receptor with circulating particles that display a peptide mimic of the natural ligand that binds IL-11Ra.

Osteosarcoma is the most common primary malignant tumor of bone. "Existing treatment has not changed the prognosis for osteosarcoma for the last 20 to 30 years," said lead investigator Valerae O. Lewis, M.D., associate professor and chief of Orthopedic Oncology at M. D. Anderson. "About 30 percent of patients still relapse and die of their disease. New therapeutic strategies and agents are needed."

The effectiveness of the current chemotherapy regimens for osteosarcoma is limited by toxic side effects, including damage to the heart and nerves, kidney failure and hearing loss, Lewis noted. Identification of a target specific for osteosarcoma cells opens the door for the development of therapies that can shut down the tumor cells without inflicting the collateral damage caused by conventional osteosarcoma treatments.

IL-11Ra is a target in bone metastasis; far less is known about its attributes, if any, in primary tumors of bone. To address IL-11R? as a potential molecular target in osteosarcoma, the authors confirmed the protein expression and localization of IL-11Ra in several mouse and human osteosarcoma cell lines.

In an orthotopic mouse model of human osteosarcoma, the investigators found that the IL-11Ra not only was markedly present in the primary osteosarcoma and in its metastases but was absent from normal bone marrow and lungs.

To evaluate the accessibility of IL-11Ra as a target, the researchers intravenously administered small, virus-like particles called phages equipped with a peptide that mimics IL-11, the receptor's natural ligand. After 24 hours in circulation, the ligand-directed particles were taken up in the tumors but showed little or no accumulation in several control organs.

"Connecting therapeutic agents to this ligand-directed system might result in improved, targeted drugs," said co-senior author Renata Pasqualini, Ph.D., Professor of Medicine and Cancer Biology in the David H. Koch Center at M. D. Anderson.

"It is conceptually unexpected that a receptor would be over-expressed not only in metastatic tumors to bone but also in primary bone tumors; this is quite important because human osteosarcoma is a malignant tumor with very few targets at the protein level," said co-senior author Wadih Arap, M.D, Ph.D., also Professor of Medicine and Cancer Biology in the David H. Koch Center.

Immunohistochemical staining analysis of IL-11Ra expression in primary and metastatic human osteosarcoma samples provided further evidence of the potential value of IL-11Ra as a therapeutic target. All primary human osteosarcoma samples exhibited moderate-to high-intensity staining of tumor cells. More than half of tumor blood vessels also showed moderate-to-high-intensity staining. All pulmonary metastases were positive for IL-11Ra expression, while normal, control lung tissue was negative.

"This indicates that therapeutic targeting of IL-11Ra may yield anti-tumor, anti-metastasis and anti-angiogenesis effects in osteosarcoma," Lewis said.

Phase I trial of IL-11R for bone metastasis

The U.S. Food and Drug Administration recently issued "safe to proceed" status for an M. D. Anderson-sponsored investigational new drug based on a cell-death-inducing therapy directed at IL-11R. The drug is defined as BMTP-11 (Bone Metastasis Targeting Peptide 11). The first clinical trial, in which BMTP-11 will be evaluated in prostate cancer patients, will soon be activated.

Lewis noted that the research group has initiated pre-clinical studies to measure potential anti-tumor effects of BMTP-11 in osteosarcoma models. If successful, such efforts may lead to a rapid evolution of BMTP-11 toward the management of osteosarcoma.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>