Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify potential new target for treating hepatitis C

30.03.2010
Inhibitor that binds to genetic material may prevent virus from replicating

A team of scientists including University of Utah researchers has discovered that binding of a potent inhibitor of the hepatitis C virus (HCV) to the genetic material of the virus causes a major conformational change that may adversely affect the ability of the virus to replicate.

This discovery, published in the March 29 early edition of the Proceedings of the National Academy of Sciences, provides a potential new target for structure-based design of new hepatitis C treatments.

Hepatitis C is a major public health problem affecting as many as 170 million people worldwide, with 2 million to 3 million new cases diagnosed each year. In the United States, HCV infection is the major cause of liver cancer and liver transplantation and it results in the death of approximately 10,000 people each year. Currently, the most effective treatment for hepatitis C is an agent called pegylated interferon, which is often combined with an antiviral drug called ribavirin.

"The available therapies for hepatitis C infection have limited effectiveness, with less than a 50 percent response," says Darrell R. Davis, Ph.D., the lead author and professor and interim chair of medicinal chemistry and professor of biochemistry at the University of Utah. "However, small molecules that inhibit viral replication have been reported and they represent potential opportunities for new, more effective HCV treatments."

HCV is a member of the Flaviviridae family of viruses, which also includes the viruses that cause yellow fever and dengue. There are six major genotypes of HCV, which differ slightly in their genetic constitution and vary in their response to treatment. HCV has a single strand of ribonucleic acid (RNA) as its genetic material and the virus replicates by copying this RNA. Previous research has shown that the three-dimensional structure of HCV RNA appears to be crucial for initiating the viral replication process.

Davis and his colleagues, including scientists from Isis Pharmaceuticals Inc., in Carlsbad, Calif., studied a potent small-molecule HCV replication inhibitor called Isis-11 to understand how it inhibits viral replication. They discovered that Isis-11 binds to a region of the viral RNA that is common to all six genotypes of HCV, altering the structure in a way that likely prevents the synthesis of viral proteins. The Isis-11 inhibitor effectively eliminated a bent RNA conformation that other laboratories have shown is required for the proper function of the HCV genomic RNA.

"Binding of Isis-11 resulted in a major conformational change in a specific region of HCV RNA that is thought to be critical for viral replication," says Davis. "This alteration in structure provides a possible mechanism for the antiviral activity of Isis-11 and other HCV replication inhibitors in that chemical class."

It is possible that, because HCV replication inhibitors like Isis-11 bind to a region of RNA that is conserved among all genotypes of the virus, they might be effective against a majority of HCV genotypes. Davis and his colleagues also noted that Isis-11 binds with low affinity to HCV RNA, resulting in a relatively loose bond and suggesting that there is considerable potential for optimizing this class of HCV replication inhibitors by modifying them to have tighter bonds to the genetic material of the virus.

"Now that we know the structure of the inhibitor-found form of the HCV RNA we can use this structure as a basis for a design strategy that will increase the anti-viral activity of these inhibitors," says Davis. "Hopefully, our findings will eventually lead to a new class of highly potent and specific HCV therapeutics."

Isis Pharmaceuticals provided the Isis compound for this study, but did not give any funding for the research.

Phil Sahm | EurekAlert!
Further information:
http://www.utah.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>