Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify potential new target for treating hepatitis C

30.03.2010
Inhibitor that binds to genetic material may prevent virus from replicating

A team of scientists including University of Utah researchers has discovered that binding of a potent inhibitor of the hepatitis C virus (HCV) to the genetic material of the virus causes a major conformational change that may adversely affect the ability of the virus to replicate.

This discovery, published in the March 29 early edition of the Proceedings of the National Academy of Sciences, provides a potential new target for structure-based design of new hepatitis C treatments.

Hepatitis C is a major public health problem affecting as many as 170 million people worldwide, with 2 million to 3 million new cases diagnosed each year. In the United States, HCV infection is the major cause of liver cancer and liver transplantation and it results in the death of approximately 10,000 people each year. Currently, the most effective treatment for hepatitis C is an agent called pegylated interferon, which is often combined with an antiviral drug called ribavirin.

"The available therapies for hepatitis C infection have limited effectiveness, with less than a 50 percent response," says Darrell R. Davis, Ph.D., the lead author and professor and interim chair of medicinal chemistry and professor of biochemistry at the University of Utah. "However, small molecules that inhibit viral replication have been reported and they represent potential opportunities for new, more effective HCV treatments."

HCV is a member of the Flaviviridae family of viruses, which also includes the viruses that cause yellow fever and dengue. There are six major genotypes of HCV, which differ slightly in their genetic constitution and vary in their response to treatment. HCV has a single strand of ribonucleic acid (RNA) as its genetic material and the virus replicates by copying this RNA. Previous research has shown that the three-dimensional structure of HCV RNA appears to be crucial for initiating the viral replication process.

Davis and his colleagues, including scientists from Isis Pharmaceuticals Inc., in Carlsbad, Calif., studied a potent small-molecule HCV replication inhibitor called Isis-11 to understand how it inhibits viral replication. They discovered that Isis-11 binds to a region of the viral RNA that is common to all six genotypes of HCV, altering the structure in a way that likely prevents the synthesis of viral proteins. The Isis-11 inhibitor effectively eliminated a bent RNA conformation that other laboratories have shown is required for the proper function of the HCV genomic RNA.

"Binding of Isis-11 resulted in a major conformational change in a specific region of HCV RNA that is thought to be critical for viral replication," says Davis. "This alteration in structure provides a possible mechanism for the antiviral activity of Isis-11 and other HCV replication inhibitors in that chemical class."

It is possible that, because HCV replication inhibitors like Isis-11 bind to a region of RNA that is conserved among all genotypes of the virus, they might be effective against a majority of HCV genotypes. Davis and his colleagues also noted that Isis-11 binds with low affinity to HCV RNA, resulting in a relatively loose bond and suggesting that there is considerable potential for optimizing this class of HCV replication inhibitors by modifying them to have tighter bonds to the genetic material of the virus.

"Now that we know the structure of the inhibitor-found form of the HCV RNA we can use this structure as a basis for a design strategy that will increase the anti-viral activity of these inhibitors," says Davis. "Hopefully, our findings will eventually lead to a new class of highly potent and specific HCV therapeutics."

Isis Pharmaceuticals provided the Isis compound for this study, but did not give any funding for the research.

Phil Sahm | EurekAlert!
Further information:
http://www.utah.edu

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>