Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify potential new leukemia drug target

23.10.2015

New treatment options are badly needed for acute myeloid leukemia, a relatively rare form of cancer. The malignancy begins in the bone marrow, and from there can spread rapidly to the bloodstream, depriving the body of the essential blood cells that carry oxygen and fight infections.

Now, new work from a team lead by Rockefeller University researchers has revealed a potential genetic weakness of the disease, offering insights into the molecular mechanisms behind acute myeloid leukemia and suggesting a new target for drug development.


The image shows cancerous mouse bone marrow cells generated by the mutant protein AE, found in 15 percent of acute myeloid leukemia patients. Using AE as an entry point, the researchers found another protein that prompts similar changes in gene activation.

Credit: Laboratory of Biochemistry and Molecular Biology at The Rockefeller University/Nature

Previously, researchers identified a variety of mutations associated with this disease, including a DNA rearrangement found in about 15 percent of patients. The abnormal DNA-binding protein produced as a result of this mutation takes on entirely new functions, dramatically altering a set of genes that are turned on in a cell to promote the cancer. But how this mutation affects these changes has remained mysterious.

In their new work published on October 21 in Genes and Development, the researchers describe how they identified the molecular mechanism behind this gene activation.

The researchers, led by Robert G. Roeder, Arnold and Mabel Beckman Professor and head of Rockefeller's Laboratory of Biochemistry and Molecular Biology, began by searching for proteins that interact with the mutant protein, known as AE, produced by a DNA rearrangement. Their screen identified JMJD1C, an enzyme that removes chemical tags, known as methyl groups, from histones, which are proteins contained in chromosomes. These tags serve as repressive marks, indicating that genes in the associated region should be turned off.

To investigate the relationship between JMJD1C and AE, the team first explored the broader effects of removing JMJD1C. "We found that numerous genes were down-regulated upon loss of JMJD1C, and the set overlaps significantly with the genes that are normally activated by AE," explains first author Mo Chen, a postdoc in Roeder's lab.

The loss of gene expression turns out to have dramatic consequences for the disease. The team found that acute myeloid leukemia cells are addicted to the presence of JMJD1C, and without it they cannot survive. "In fact, these cells were very sensitive to depletion of JMJD1C," says Chen. "We see an increase in apoptosis, a sort of cellular suicide."

The team confirmed that JMJD1C interacts with AE, and demonstrated that the enzyme is required for AE to exert its cancer-promoting effects. But they also found that JMJD1C plays an even a broader role in acute myeloid leukemia, beyond its interaction with AE.

"We were very surprised to find that JMJD1C is required for the proliferation of other acute myeloid leukemia cell lines, which do not have AE, so we looked for other proteins that might be responsible for JMJD1C addiction," says Chen. The team found at least two other proteins that can recruit JMJD1C to target genes in diseased cells that lack AE, fueling leukemia growth.

These results suggest that JMJD1C may play a general role in promoting growth in myeloid leukemias, according to the researchers. "We are excited because this type of general phenomena is an ideal target for drug development," Roeder says.

There are already small molecules that inhibit this class of enzymes. "Our work will facilitate the development of selective inhibitors against JMJD1C, which is a highly promising therapeutic target for multiple types of leukemia," Roeder adds.

Wynne Parry | EurekAlert!

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>