Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify another potential biomarker

15.01.2009
Researchers from Boston University School of Medicine (BUSM) have demonstrated that a recently discovered class of molecule called microRNA (miRNAs), regulate the gene expression changes in airway cells that occur with smoking and lung cancer.

These findings, which appear in the on-line early edition of journal Proceedings of the National Academy of Sciences, may lead to a new, relatively non-invasive biomarker for smoking-related lung diseases.

Approximately 1.3 billion people smoke cigarettes worldwide, which contributes to five million preventable deaths per year. Smoking is a significant risk factor for lung cancer, the leading cause of cancer death in the United States and the world, with more than one million deaths worldwide annually.

Eighty-five to 90 percent of subjects with lung cancer in the United States are current or former smokers with 10 to 20 percent of heavy smokers developing this disease. Because of the lack of effective diagnostic biomarkers and the inability to identify which current and former smokers are at greatest risk, lung cancer is most often diagnosed at a late stage where current therapies are largely ineffective.

A previous study by the same researchers reported a gene expression biomarker capable of distinguishing cytologically normal bronchial airway epithelial cells from smokers with and without lung cancer, serving as an early diagnostic biomarker for lung cancer. The importance of this "field-of-injury" concept is that it allows for the detection of lung cancer in tissues that are more readily sampled than the diseased lung tissue itself. In this study, the researchers profiled the miRNAs in these readily accessible airway epithelial cells and identified those that are differentially expressed with smoking.

Studying current and non-smokers, the researchers examined whole-genome miRNA and mRNA expression in bronchial airway epithelial brushings obtained at bronchoscopy and found 28 miRNAs to be differentially expressed in the majority of smokers. In addition, the researchers showed that by modulating the expression of one such miRNA (mir-218), it was sufficient to alter the expression of a subset of the mRNAs that are both predicted targets of this miRNA and altered by smoking in vivo.

"These studies suggest that smoking-dependent changes in miRNA expression levels mediate some of the smoking induced gene expression changes in airway epithelium and that miRNAs therefore play a role in the host response to environmental exposures and may contribute to the pathogenesis of smoking-related lung cancer," said senior author Avrum Spira, MD, an associate professor of medicine and pathology at BUSM.

According to the researchers, it is hoped that miRNA profiles obtained from these cells may serve as relatively non-invasive biomarkers for smoking-related lung diseases.

"These microRNA changes may serve as more robust biomarkers in clinical samples given their role as regulators of multiple mRNAs and their relative resistance to degradation," said first author Frank Schembri, MD, an assistant professor of medicine at BUSM.

Gina DiGravio | EurekAlert!
Further information:
http://www.bmc.org

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

Large-scale battery storage system in field trial

11.12.2017 | Power and Electrical Engineering

See, understand and experience the work of the future

11.12.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>