Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers identify potential new avenue to attack cancer

New insight into how human cells reproduce, published by cancer researchers at Michigan State University and the Van Andel Research Institute in Grand Rapids, could help scientists move closer to finding an “off switch” for cancer.

Cancer cells divide uncontrollably and can move from one part of the body to another. They undergo dramatic shifts in shape when they do so, said Aaron DeWard, an MSU cell and molecular biology doctoral candidate who published his research recently in the Journal of Biological Chemistry. He’s trying to figure out how certain proteins trigger cell movement and division and how cancer hijacks the system to create genomic instability.

DeWard and his academic adviser, VARI senior scientific investigator Art Alberts, investigated proteins called formins that help determine the shape of a cell during division and movement. They identified a new mechanism for regulation of formins during cell division.

“One of the cool things about these proteins is that they’re tightly regulated – they will only do their jobs when they’re told to do so,” DeWard said, describing formins as the workers that put together the pieces that shape a cell.

“A lot of work has been done on how to get these proteins to work, but not when to stop working,” he said. “We identified the way in which these proteins get flagged for destruction. This mechanism is pretty common for a lot of proteins, but had never been shown for this family of proteins before, and no one really knew how to shut them off completely.”

The family of proteins DeWard and Alberts are studying could lend themselves well to pharmaceutical treatment, he added.

“Aaron's observation gives us a handle on the molecular machinery controlling cell division,” Alberts said. "Our goal now is to exploit this information in the development of strategies to specifically stop the process of uncontrolled cell division that characterizes cancer."

“I don’t think shutting them off will stop cancer, but by better understanding the mechanism of this we might find ways to manipulate the system,” DeWard said.

The MSU-VARI connection constitutes a vibrant, research-oriented dimension to the university’s growing presence in the western Michigan health care complex. Michigan State opens its new College of Human Medicine building, the Secchia Center, in downtown Grand Rapids near VARI parent Van Andel Institute, Spectrum Health and other health care organizations in 2010. It signed a research collaboration agreement with the VAI in 2006.

“Collaboration is essential to developing West Michigan as a center for life sciences,” said Steve Heacock, VAI chief administrative officer and general counsel. “A solid connection and interaction between students, scientists, medical professionals and the entire life science community is vital. We have a strong collaboration. MSU students work in VAI laboratories, MSU and VAI researchers collaborate on studies and there will be a two-way connection between VAI and the new MSU College of Human Medicine.”

A joint graduate school program allows graduate students in several medicine-related programs to take one of their laboratory “rotations” at VARI, and afterward to complete their thesis project there. Four VARI fellowships also are awarded to MSU first-year graduate students interested in cancer research or cell biology.

Established by Jay and Betty Van Andel in 1996, Van Andel Institute (VAI) is an independent research and educational organization based in Grand Rapids, Mich., dedicated to preserving, enhancing and expanding the frontiers of medical science, and to achieving excellence in education by probing fundamental issues of education and the learning process. VARI, the research arm of VAI, is dedicated to probing the genetic, cellular and molecular origins of cancer, Parkinson and other diseases and working to translate those findings into effective therapies. This is accomplished through the work of over 200 researchers in 18 on-site laboratories, in laboratories in Singapore and Nanjing, and in collaborative partnerships that span the globe.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Mark Fellows | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>