Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers identify novel pathway responsible for infection of a common STD pathogen

Researchers from Boston University School of Medicine (BUSM) have for the first time identified a novel pathway that is necessary for infection to occur with the pathogen Neisseria gonorrhoeae, which is responsible for the second most common infectious disease worldwide, gonorrhea. The study, which was recently published online in the Journal of Bacteriology, may lead to new treatment methods for this sexually transmitted disease.

N. gonorrhoeae is a pathogenic bacterium that readily develops resistance to antibiotics such as sulfanilamides, penicillins, tetracyclines and fluoroquinolones. It has recently been reported that N. gonorrhoeae is becoming resistant to cephalosporins, which are the only treatment option recommended by the Centers for Disease Control and Prevention (CDC). Today, new therapeutic methods other than antibiotics are in great need to treat these infections.

According to the BUSM researchers, understanding the process of how N. gonorrhoeae causes disease in both men and women is essential for the design of new targets to block the infection. "The first step in the disease gonorrhea is the colonization of bacteria on human mucosal surfaces, such as the vaginal and penile mucosa," explained senior author Caroline Genco, PhD, professor of medicine and microbiology and director of research in infectious diseases at BUSM.

In this study, Genco and her colleagues identified a novel pathway that is critical for colonization of this bacterium on host mucosal surface. The key of this pathway is a single protein, designated as Fur, the ferric uptake regulatory protein, which controls the expression of hundreds of N. gonorrhoeae genes by either increasing or decreasing the expression of these genes.

The study found that genes whose expression is increased by Fur may play a critical role in the prevention of disease development by triggering the host immune system to recognize and clear the bacterium.

"These pivotal studies provide new candidates that can be targeted for therapeutic intervention in this common sexually transmitted disease," she added.

Gina DiGravio | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>