Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify novel pathway responsible for infection of a common STD pathogen

28.02.2012
Researchers from Boston University School of Medicine (BUSM) have for the first time identified a novel pathway that is necessary for infection to occur with the pathogen Neisseria gonorrhoeae, which is responsible for the second most common infectious disease worldwide, gonorrhea. The study, which was recently published online in the Journal of Bacteriology, may lead to new treatment methods for this sexually transmitted disease.

N. gonorrhoeae is a pathogenic bacterium that readily develops resistance to antibiotics such as sulfanilamides, penicillins, tetracyclines and fluoroquinolones. It has recently been reported that N. gonorrhoeae is becoming resistant to cephalosporins, which are the only treatment option recommended by the Centers for Disease Control and Prevention (CDC). Today, new therapeutic methods other than antibiotics are in great need to treat these infections.

According to the BUSM researchers, understanding the process of how N. gonorrhoeae causes disease in both men and women is essential for the design of new targets to block the infection. "The first step in the disease gonorrhea is the colonization of bacteria on human mucosal surfaces, such as the vaginal and penile mucosa," explained senior author Caroline Genco, PhD, professor of medicine and microbiology and director of research in infectious diseases at BUSM.

In this study, Genco and her colleagues identified a novel pathway that is critical for colonization of this bacterium on host mucosal surface. The key of this pathway is a single protein, designated as Fur, the ferric uptake regulatory protein, which controls the expression of hundreds of N. gonorrhoeae genes by either increasing or decreasing the expression of these genes.

The study found that genes whose expression is increased by Fur may play a critical role in the prevention of disease development by triggering the host immune system to recognize and clear the bacterium.

"These pivotal studies provide new candidates that can be targeted for therapeutic intervention in this common sexually transmitted disease," she added.

Gina DiGravio | EurekAlert!
Further information:
http://www.bmc.org

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>