Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify molecular 'culprit' in rise of planetary oxygen

11.01.2012
A turning point in the history of life occurred 2 to 3 billion years ago with the unprecedented appearance and dramatic rise of molecular oxygen. Now researchers report they have identified an enzyme that was the first – or among the first – to generate molecular oxygen on Earth.

The new findings, reported in the journal Structure, build on more than a dozen previous studies that aim to track the molecular evolution of life by looking for evidence of that history in present-day protein structures. These studies, led by University of Illinois crop sciences and Institute for Genomic Biology professor Gustavo Caetano-Anollés, focus on structurally and functionally distinct regions of proteins – called folds – that are part of the universal toolkit of living cells.

Protein folds are much more stable than the sequences of amino acids that compose them, Caetano-Anollés said. Mutations or other changes in sequence often occur without disrupting fold structure or function. This makes folds much more reliable markers of long-term evolutionary patterns, he said.

In the new study, Caetano-Anollés, working with colleagues in China and Korea, tackled an ancient mystery: Why did some of the earliest organisms begin to generate oxygen, and why?

“There is a consensus from earth scientists that about 2.4 billion years ago there was a big spike in oxygen on Earth,” Caetano-Anollés said. They generally agree that this rise in oxygen, called the Great Oxygenation Event, was tied to the emergence of photosynthetic organisms.

“But the problem now comes with the following question,” he said. “Oxygen is toxic, so why would a living organism generate oxygen? Something must have triggered this.”

The researchers looked for answers in the “molecular fossils” that still reside in living cells. They analyzed protein folds in nearly a thousand organisms representing every domain of life to assemble a timeline of protein history. Their timeline for this study was limited to single-fold proteins (which the researchers believe are the most ancient), and was calibrated using microbial fossils that appeared in the geologic record at specific dates.

The analysis revealed that the most ancient reaction of aerobic metabolism involved synthesis of pyridoxal (the active form of vitamin B6, which is essential to the activity of many protein enzymes) and occurred about 2.9 billion years ago. An oxygen-generating enzyme, manganese catalase, appeared at the same time.

Other recent studies also suggest that aerobic (oxygen-based) respiration began on Earth 300 to 400 million years before the Great Oxidation Event, Caetano-Anollés said. This would make sense, since oxygen production was probably going on for a while before the spike in oxygen occurred.

Catalases convert hydrogen peroxide to water and oxygen. The researchers hypothesize that primordial organisms “discovered” this enzyme when trying to cope with an abundance of hydrogen peroxide in the environment. Some geochemists believe that hydrogen peroxide was abundant at this time as a result of intensive solar radiation on glaciers that covered much of Earth.

“In the glacial melt waters you would have a high concentration of hydrogen peroxide and that would be gradually exposing a number of the primitive organisms (alive at that time),” Caetano-Anollés said. The appearance of manganese catalase, an enzyme that degrades hydrogen peroxide and generates oxygen as a byproduct, makes it a likely “molecular culprit for the rise of oxygen on the planet,” he said.

The research team included scientists from the Korea Research Institute of Bioscience and Biotechnology; Huazhong Agricultural University, China; and Shandong University of Technology, China.

Editor’s notes: To reach Gustavo Caetano-Anollés,
call 217-333-8172; email gca@illinois.edu.
The paper, “Protein Domain Structure Uncovers the Origin of Aerobic Metabolism and the Rise of Planetary Oxygen,” is available from the U. of I. News Bureau.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>