Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Identify Missing Piece of the DNA Replication Puzzle

DNA replication is a basic function of living organisms, allowing cells to divide and multiply, all while maintaining the genetic code and proper function of the original cell.

The process, or mechanism, by which this is accomplished presents many challenges as the double helical (coil-shaped) DNA divides into two strands that are duplicated by different methods, yet both strands complete the replication at the same time.

New research by a team from UMDNJ-Robert Wood Johnson Medical School in conjunction with the University of Illinois and published in the Dec. 17 issue of Nature, has addressed this fundamental problem. The study identifies three essential ways the synthesis of the two strands is coordinated by enzymes, settling scientific deliberations on how the two DNA strands are copied in the same time span.

“DNA replication is a fundamental reaction required for the maintenance, survival, and propagation of living cells. It is also a very complex reaction that has been studied for decades without a clear understanding of how the two interwound strands are copied at the same time,” says Smita Patel, PhD, professor of biochemistry at Robert Wood Johnson Medical School and lead author of the paper. “Our study explains how the replication is coordinated -- an important piece of the puzzle, because errors in DNA replication can cause disabilities and disease, such as cancer.”

The helicase enzyme initiates DNA replication, by unwinding, or separating, the strands which are then reproduced by polymerase enzymes which are responsible for making an exact copy of the DNA. One strand, called the leading strand, is reproduced continuously, whereas the other, lagging strand is reproduced in fragments that are later joined together. How the two strands are replicated at the same time was not previously understood because the polymerase enzyme that replicates the lagging strand must recycle after the completion of each fragment.

According to Dr. Patel, the researchers used these state-of-the-art methods to measure the progression of DNA synthesis in the millisecond time scale. “We employed rapid kinetic methods to investigate this problem and coupled it with single molecule fluorescence measurements to show that the replication enzymes do not pause, as previously thought, but our studies suggest that the short fragments are synthesized at a slightly faster rate so lagging strand synthesis can keep up with the synthesis of the leading strand that is made continuously,” said Dr. Patel.

These methods captured the replication enzymes in the act of making the DNA and identified the three ways the strands complete replication simultaneously. First, as Dr. Patel noted, the lagging strand polymerase keeps up with the leading strand polymerase by moving a little faster, which gives the lagging polymerase the extra time it needs to recycle and start the synthesis of a new DNA fragment. This finding supports an early model proposed by Bruce Alberts, a professor emeritus in the department of biochemistry and biophysics at the University of California, San Francisco, former president of the National Academy of Sciences and editor-in-chief of Science magazine.

The study also shows that the reproduction time is further reduced by making the RNA primer ahead of time as the lagging-strand synthesis progresses through the cycle. The RNA primer is a sequence of nucleotides (molecules that, when joined together, make up the structural units of RNA and DNA) copied from DNA. According to Dr. Patel, the polymerase needs RNA primer to initiate replication of a new fragment and that making it “on the fly” saves time in the replication process. Lastly, the research shows that the RNA primer is kept in physical proximity to the lagging strand polymerase by means of a priming loop so that the polymerase enzyme can access it and begin replication of a new fragment quickly.

Thus, the faster movement of the lagging strand polymerase enzyme, the ability to make the RNA primer ahead of time and the ability for the polymerase enzyme to access the RNA primer quickly due to its close location allow the two strands of the DNA to be copied in the same time span.

The study was a collaboration of investigative teams led by Smita Patel, PhD, professor of biochemistry at Robert Wood Johnson Medical School and Taekjip Ha, PhD, HHMI investigator and professor of physics and a co-director of Center for the Physics of Living Cells at the University of Illinois at Urbana-Champaign. The study, officially titled “Coordinating DNA replication via priming loop and differential synthesis rate” was chosen for advanced online publication in November and appears in the December 17 print issue of Nature, pages 940-944. The first author of the paper is Manjula Pandey, PhD, a research teaching specialist and additional authors include graduate student Ilker Donmez and research teaching specialist Gayatri Patel of the department of biochemistry at Robert Wood Johnson Medical School and Salman Syed, research scientist in the department of physics at the University of Illinois at Urbana-Champaign. The paper can be found online at:

The research was supported by grants from the National Institutes of Health and the National Science Foundation.

As one of the nation’s leading comprehensive medical schools, Robert Wood Johnson Medical School of the University of Medicine and Dentistry of New Jersey is dedicated to the pursuit of excellence in education, research, health care delivery, and the promotion of community health. In cooperation with Robert Wood Johnson University Hospital, the medical school’s principal affiliate, they comprise New Jersey’s premier academic medical center. In addition, Robert Wood Johnson Medical School has 34 hospital affiliates and ambulatory care sites throughout the region.

As one of the eight schools of the University of Medicine and Dentistry of New Jersey with 2,800 full-time and volunteer faculty, Robert Wood Johnson Medical School encompasses 22 basic science and clinical departments and hosts centers and institutes including The Cancer Institute of New Jersey, the Child Health Institute of New Jersey, the Center for Advanced Biotechnology and Medicine, the Environmental and Occupational Health Sciences Institute, and the Stem Cell Institute of New Jersey. The medical school maintains educational programs at the undergraduate, graduate and postgraduate levels for more than 1,500 students on its campuses in New Brunswick, Piscataway, and Camden, and provides continuing education courses for health care professionals and community education programs.

To learn more about UMDNJ-Robert Wood Johnson Medical School, visit Find our fan page on Facebook and follow us on Twitter @UMDNJ_RWJMS.

Jennifer Forbes | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>