Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Identify New Method to Selectively Kill Metastatic Melanoma Cells

An international team of researchers has identified a new method for selectively killing metastatic melanoma cells, which may lead to new areas for drug development in melanoma – a cancer that is highly resistant to current treatment strategies.

Researchers from Virginia Commonwealth University, in collaboration with a team of researchers led by Maria S. Soengas, Ph.D., with the Spanish National Cancer Research Center in Madrid, Spain, found that activation of a specific molecular pathway triggers melanoma cells to begin a process of self-destruction – through self-digestion and programmed cell death. The study is published in the August 4 print issue of the journal Cancer Cell.

“The present research provides a path that could lead with further studies and a phase I clinical trial for safety to the development of a strategy that reenergizes the immune system to destroy this highly aggressive cancer,” said lead investigator at VCU, Paul B. Fisher, M.Ph., Ph.D., the first incumbent of the Thelma Newmeyer Corman Endowed Chair in Cancer Research with the VCU Massey Cancer Center.

According to Fisher, the pathway that is activated involves the melanoma differentiation associated gene-5, or mda-5, a gene initially cloned in Fisher's laboratory, that activates a protein called NOXA that is involved with programmed cell death. This series of chemical reactions results in induction of a cell-killing process involving self-digestion that leads to programmed cell death specifically in melanoma cells. Fisher said that mda-5 is a key regulator of innate immunity that induces interferon beta production limiting replication of specific pathogenic viruses.

This work was supported by grants from the National Institutes of Health, the Spanish Ministry of Science and Innovation, the Spanish Association Against Cancer and the Spanish National Cancer Research Center.

The project team in Spain was led by Soengas, with the Melanoma Laboratory, Molecular Pathology Program, Spanish National Cancer Research Center, Madrid, Spain. Fisher, who also is professor and chair of the Department of Human and Molecular Genetics, and director of the VCU Institute of Molecular Medicine in the VCU School of Medicine, lead the investigative team at VCU which included Paola M. Barral, Ph.D., assistant professor in the Department of Human and Molecular Genetics; and Rupesh Dash, Ph.D., postdoctoral research scientist, in the Department of Human and Molecular Genetics, and the VCU Institute of Molecular Medicine.

About VCU and the VCU Medical Center:

Virginia Commonwealth University is the largest university in Virginia with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls 32,000 students in 205 certificate and degree programs in the arts, sciences and humanities. Sixty-five of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 15 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers. For more, see

About the VCU Massey Cancer Center:

The VCU Massey CancerCenter is one of 63 National Cancer Institute-designated institutions that leads and shapes America’s cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It offers more clinical trials than any other institution in Virginia, serving patients in Richmond and in four satellite locations. Treating all kinds of cancers, its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and, ultimately, to cure cancer. Visit Massey online at or call 1-877-4-MASSEY.

Sathya Achia Abraham | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>