Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify New Mechanism of Blocking HIV-1 from Entering Cells

01.12.2009
Publishing in PLoS Pathogens, researchers at from the Kimmel Cancer Center at Jefferson have found a novel mechanism by which drugs block HIV-1 from entering host cells.

Cellular invasion by HIV-1 requires the concerted action of two proteins on the viral surface: gp120 and gp41. The function of gp41 is to get the viral contents into the interior of the host cells. This requires the association of two distinct regions of gp41 called N-HR and C-HR.

Anti-HIV-1 agents known as fusion inhibitors target the N-HR or C-HR and disrupt their association, which prevents the virus from entering into the host cell. One drug that works like this is Fuzeon (Roche), and there are other agents in the pipeline.

But blocking the N-HR/C-HR association is not only mechanism by which fusion inhibitors prevent HIV-1 entry, according to Michael Root, M.D., Ph.D., assistant professor of Biochemistry and Molecular Biology at Jefferson Medical College of Thomas Jefferson University. The inhibitors also induce irreversible deactivation of gp41.

“After these drugs bind, they seem to shuttle gp41 into a dead conformation from which the protein cannot recover,” Dr. Root said. “Importantly, the speed of this drug-induced deactivation greatly influences how potent a drug is at preventing HIV-1 infection.”

When the inhibitors bind to the gp41 C-HR, the protein rapidly deactivates before inhibitors have time to dissociate. But when the inhibitors bind to the gp41 N-HR, deactivation takes a very long time, and many inhibitors can readily unbind. To potently inhibit HIV-1 entry, a C-HR targeting fusion inhibitor can have a relatively low affinity, but an N-HR targeting fusion inhibitor must bind extremely tightly.

A major drawback to using Fuzeon and related drugs that target N-HR is the rapid emergence of HIV-1 strains resistant to the drugs. Dr. Root’s study suggests that the resistance phenomenon is related to the slow speed of gp41 deactivation induced by these fusion inhibitors. HIV-1 appears to have more difficulty developing resistance to drugs that can remain bound to gp41 for much longer than gp41 takes to deactivate, even if the drugs are no more potent than Fuzeon against the original HIV-1 strain. Armed with this knowledge, Dr. Root and his team have developed a new strategy to improve the antiviral activities of N-HR-targeting fusion inhibitors.

These unexpected properties of HIV-1 fusion inhibitors are a consequence of the short time interval these drugs have to work. The N-HR and C-HR are only accessible to drug binding in a short-lived “intermediate state” that occurs right before N-HR/C-HR association. Most pharmaceutical agents bind targets that exist for long times, but a growing class of drugs target similar, short-lived intermediate states. These drugs include local anesthetics, antibiotics and immunosuppressive agents used in clinical practice. The results of this study might also be extended to understand the activities and limitations of these drugs.

Emily Shafer | Newswise Science News
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>